Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.778
Filtrar
1.
Appl Spectrosc ; : 37028241279434, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289910

RESUMEN

Cinchonine is a quinoline alkaloid known for its antimalarial properties. Due to the advantages of using compounds of metal ions with alkaloids, a copper(II) compound with cinchonine was synthesized, and, for comparative purposes, a cadmium(II) compound with cinchonine. During the synthesis, the emerging interactions between the metal ion and cinchonine were studied. After crystallization, it was examined how the obtained compounds would interact with the model blood component, hematoporphyrin IX. Ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) were used in the study. In the case of monitoring the synthesis, the best method turned out to be UV-Vis spectroscopy, combined with the possibility of two-dimensional correlation spectroscopy (2D-COS), which enabled the identification of peaks characteristic of the interactions of the cinchonine quinoline ring with metal ions. In turn, the obtained Raman spectra showed shifts of individual bands and changes in their intensity, and 2D-COS showed the sequence of formation of individual interactions, which confirmed the formation of cinchonine compounds with metals. ATR FT-IR also allowed us to compare the spectra of the substrates used in the synthesis with the crystallized compounds and thus confirm the formation of the expected compounds. Bands characteristic of π-π-stacking interactions between the quinoline ring and the tetrapyrrole ring of hematoporphyrin IX were also observed. Observed interaction with a model blood component may be important when designing drugs for antimalarial therapy.

2.
Nano Lett ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283057

RESUMEN

Two-dimensional (2D) semiconductors, owing to their strong excitonic emission, are emerging as efficient gain media for constructing the ultimate nanolaser. The further integration of 2D semiconductors with plasmonic devices holds promise for realizing the thinnest laser. However, the implementation of 2D semiconductor plasmonic lasing is severely hindered by the limited cavity feedback and low gain resulting from insufficient plasmon-exciton interactions. Here, we report the realization of a room-temperature 2D semiconductor plasmonic laser by embedding an InSe nanoflake into a plasmonic Fabry-Perot (F-P) cavity. This plasmonic F-P cavity shows an exceptional ability to recycle the leaked dark surface plasmon, resulting in >2-fold enhancement of feedback compared to that of conventional metal-insulator-semiconductor nanolasers. Moreover, via combination of field enhancement and orientation matching, this cavity facilitates optimized plasmon-exciton coupling to ensure sufficient gain for sustaining room-temperature lasing. Our work may open up the possibilities for multifunctional photonic devices based on 2D materials.

3.
J Mol Model ; 30(10): 331, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269505

RESUMEN

CONTEXT: The relentless need for new materials to be used in electronic devices has opened new research directions in materials science. One of them involves using two-dimensional materials, among which there is current interest in using germanene. The heteroatom doping of germanene has been proposed as a possible approach to fine-tuning its electronic properties. However, this procedure is complicated because locating the dopants with a specific arrangement is challenging, thus achieving reproducibility. To avoid this problem, we propose the codoping of germanene to understand if dopants prefer to be agglomerated as observed for graphene or if they prefer to adopt a random disposition. Herein, we employed first-principles calculations to study 21 codoped germanene systems with one 3p (Al, Si, P, and S) and one 4p (Ga, As, and Se) element. Our results indicate that in the cases of AlP, AlS, GaP, GaS, GaAs, and GaSe codoped germanene, the dopants show a tendency to be located in specific lattice positions. The ortho disposition of dopants is preferred for AlP, AlS, GaP and GaS codoped germanene and their 4p counterparts GaAs and GaSe codoped germanene, and the materials showed interesting electronic properties making them suitable to develop germanene-based electronic materials. METHODS: We utilized the M06-L, HSE06 methods accompanied by the 6-31G* basis sets to perform periodic boundary conditions calculations as implemented in Gaussian 09. The unit cells were sampled employing 100 k-points for geometry optimizations and 2000 k-points for electronic properties The ultrafine grid was employed. Results were visualized employing Gaussview 5.0.1. In addition to this, we performed B3LYP-D3 periodic calculations as implemented in CRYSTAL17.

4.
Sensors (Basel) ; 24(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275613

RESUMEN

The detection of dopamine is of great significance for human health. Herein, Pd nanoparticles were loaded on Cu nanoplates (Pd/Cu NPTs) by a novel liquid phase reduction method. A novel dopamine (DA) electrochemical sensor based on the Pd NPs/Cu/glass carbon electrode (Pd/Cu NPTs/GCE) was constructed. This sensor showed a wide linear range of 0.047 mM to 1.122 mM and a low limit of detection (LOD) of 0.1045 µM (S/N = 3) for DA. The improved performance of this sensor is attributed to the obtained tiny Pd nanoparticles which increase the catalytic active sites and electrochemical active surface areas (ECSAs). Moreover, the larger surface area of two-dimensional Cu nanoplates can load more Pd nanoparticles, which is another reason to improve performance. The Pd/Cu NPTs/GCE sensor also showed a good reproducibility, stability, and excellent anti-interference ability.


Asunto(s)
Cobre , Dopamina , Técnicas Electroquímicas , Límite de Detección , Nanopartículas del Metal , Paladio , Dopamina/análisis , Cobre/química , Nanopartículas del Metal/química , Paladio/química , Técnicas Electroquímicas/métodos , Electrodos , Técnicas Biosensibles/métodos , Humanos , Reproducibilidad de los Resultados
5.
Quant Imaging Med Surg ; 14(9): 6882-6894, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39281150

RESUMEN

Background: Assessing the age of deep vein thrombosis (DVT) is crucial for guiding treatment approaches. Two-dimensional shear-wave elastography (2D-SWE) and super-microvascular imaging (SMI), as emerging techniques for tissue elasticity assessment and intrathrombus microvascular analysis, are pivotal for accurate thrombus age determination. This research endeavors to classify DVT into acute, subacute, and chronic ages utilizing these imaging methods. Methods: The study is a prospective, single-center, inpatient investigation that utilized convenience sampling for participant recruitment. Patients with a symptom duration of <6 months who were found to have lower-extremity DVT on ultrasound (US) between January 2021 and March 2022 after craniocerebral trauma (CT) or bone injury (BI) operations were included in this study. Participants were divided into three groups based on the duration of DVT, measured from the first diagnosis of thrombosis by US to the follow-up with 2D-SWE and SMI: acute (≤14 days), subacute (15-30 days), and chronic (31 days to 6 months) All patients underwent 2D-SWE and SMI using an Aplio i700 Ultrasound System equipped with a PLT-1005BT line array probe. Diagnostic performance was assessed using the area under the receiver operating characteristic (ROC) curve. Results: The maximum value of the elastic modulus for DVT (DVT_Emax), the mean value of the elastic modulus for DVT (DVT_Emean), and SMI's flow distribution scoring pattern for DVT (SMI_scoring) emerged as significant predictors for acute and chronic, with high area under the ROC curve (AUC) of acute [AUC (95% confidential interval): 0.95 (0.89-0.97), 0.96 (0.91-0.98), 0.93 (0.88-0.97) in 39 patients] and chronic [AUC (95% confidential interval): 0.88 (0.81-0.93), 0.94 (0.88-0.97), 0.91 (0.84-0.95) in 51 patients], respectively. However, these indices had lower efficacy for subacute prediction [AUC (95% confidential interval): 0.51 (0.42-0.60), 0.54 (0.46-0.63), 0.53 (0.44-0.62), in 47 patients]. Combining DVT_Emean with SMI_scoring improved performance in predicting subacute: 0.90 (0.83-0.94) than related features alone. Conclusions: Both 2D-SWE and SMI can be used to assess acute and chronic DVT in patients with CT and BI after surgeries. This combination is a promising adjunctive technique for identifying the subacute phase of DVT in these patients.

6.
Heliyon ; 10(17): e37069, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286186

RESUMEN

We proposed and fabricated a miniaturized multi-core fiber grating vibration sensor. The size of the miniaturized vibration sensor is 10mm × 10mm × 10 mm with a mass of only 0.25g. Finite element analysis and experimental tests were carried out to validate the performance of the vibration sensor. The experiment results indicate that the sensor has a sensitivity of 68.72 pm/g in the X direction and 64.52 pm/g in the Y direction within the operating frequency range of 20-240Hz. The cross-interference between the two directions of vibration measurement falls within 4 %. The sensor is suitable for measuring mechanical vibrations in the mid-low frequency range, especially in cases where size, quality, and distributed measurement are of particular concern.

7.
Discov Nano ; 19(1): 151, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289310

RESUMEN

With the size of the aging population increasing worldwide, the effective diagnosis and treatment of neurodegenerative diseases (NDDs) has become more important. Two-dimensional (2D) materials offer specific advantages for the diagnosis and treatment of NDDs due to their high sensitivity, selectivity, stability, and biocompatibility, as well as their excellent physical and chemical characteristics. As such, 2D materials offer a promising avenue for the development of highly sensitive, selective, and biocompatible theragnostics. This review provides an interdisciplinary overview of advanced 2D materials and their use in biosensors, drug delivery, and tissue engineering/regenerative medicine for the diagnosis and/or treatment of NDDs. The development of 2D material-based biosensors has enabled the early detection and monitoring of NDDs via the precise detection of biomarkers or biological changes, while 2D material-based drug delivery systems offer the targeted and controlled release of therapeutics to the brain, crossing the blood-brain barrier and enhancing treatment effectiveness. In addition, when used in tissue engineering and regenerative medicine, 2D materials facilitate cell growth, differentiation, and tissue regeneration to restore neuronal functions and repair damaged neural networks. Overall, 2D materials show great promise for use in the advanced treatment of NDDs, thus improving the quality of life for patients in an aging population.

8.
Sci Total Environ ; 952: 175908, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39218084

RESUMEN

To date, poly- and perfluoroalkyl substances (PFAS) represent a real threat for their environmental persistence, wide physicochemical variability, and their potential toxicity. Thus far a large portion of these chemicals remain structurally unknown. These chemicals, therefore, require the implementation of complex non-targeted analysis workflows using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) for their comprehensive detection and monitoring. This approach, even though comprehensive, does not always provide the much-needed analytical resolution for the analysis of complex PFAS mixtures such as fire-fighting aqueous film-forming foams (AFFFs). This study consolidates the advantages of the LC×LC technique hyphenated with high-resolution tandem mass spectrometry (HRMS/MS) for the identification of PFAS in AFFF mixtures. A total of 57 PFAS homolog series (HS) were identified in 3M and Orchidee AFFF mixtures thanks to the (i) high chromatographic peak capacity (n'2D,c ~ 300) and the (i) increased mass domain resolution provided by the "remainder of Kendrick Mass" (RKM) analysis on the HRMS data. Then, we attempted to annotate the PFAS of each HS by exploiting the available reference standards and the FluoroMatch workflow in combination with the RKM defect by different fluorine repeating units, such as CF2, CF2O, and C2F4O. This approach resulted in 12 identified PFAS HS, including compounds belonging to the HS of perfluoroalkyl carboxylic acids (PFACAs), perfluoroalkyl sulfonic acids (PFASAs), (N-pentafluoro(5)sulfide)-perfluoroalkane sulfonates (SF5-PFASAs), N-sulfopropyldimethylammoniopropyl perfluoroalkane sulfonamides (N-SPAmP-FASA), and N-carboxymethyldimethylammoniopropyl perfluoroalkane sulfonamide (N-CMAmP-FASA). The annotated categories of perfluoroalkyl aldehydes and chlorinated PFASAs represent the first record of PFAS HS in the investigated AFFF samples.

9.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274090

RESUMEN

An innovative optimal design framework is developed aiming at enhancing the crashworthiness while ensuring the lightweight design of a hybrid two-dimensional triaxial braided composite (2DTBC) tube, drawing insights from the mesostructure of the composite material. To achieve these goals, we first compile the essential mechanical properties of the 2DTBC using a concentric cylinder model (CCM) and an analytical laminate model. Subsequently, a kriging surrogate model to elucidate the intricate relationship between design variables and macroscopic crashworthiness is developed and validated. Finally, employing multi-objective evolutionary optimization, we identify Pareto optimal solutions, highlighting that reducing the total fiber volume and increasing the glass fiber content in the total fiber volume are crucial for optimal crashworthiness and the lightweight design of the hybrid 2DTBC tube. By integrating advanced predictive modeling techniques with multi-objective evolutionary optimization, the proposed approach not only sheds light on the fundamental principles governing the crashworthiness of hybrid 2DTBC but also provides valuable insights for the design of robust and lightweight composite structures.

10.
Materials (Basel) ; 17(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274590

RESUMEN

In this work, we employ molecular dynamics simulations with semi-empirical interatomic potentials to explore heat dissipation in Janus transition metal dichalcogenides (JTMDs). The middle atomic layer is composed of either molybdenum (Mo) or tungsten (W) atoms, and the top and bottom atomic layers consist of sulfur (S) and selenium (Se) atoms, respectively. Various nanomaterials have been investigated, including both pristine JTMDs and nanostructures incorporating inner triangular regions with a composition distinct from the outer bulk material. At the beginning of our simulations, a temperature gradient across the system is imposed by heating the central region to a high temperature while the surrounding area remains at room temperature. Once a steady state is reached, characterized by a constant energy flux, the temperature control in the central region is switched off. The heat attenuation is investigated by monitoring the characteristic relaxation time (τav) of the local temperature at the central region toward thermal equilibrium. We find that SMoSe JTMDs exhibit thermal attenuation similar to conventional TMDs (τav~10-15 ps). On the contrary, SWSe JTMDs feature relaxation times up to two times as high (τav~14-28 ps). Forming triangular lateral heterostructures in their surfaces leads to a significant slowdown in heat attenuation by up to about an order of magnitude (τav~100 ps).

11.
J Colloid Interface Sci ; 678(Pt B): 1036-1048, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39276513

RESUMEN

The development of efficient and stable electrocatalysts is crucial for the advancement of green and clean hydrogen energy technologies. In this work, we synthesized a nanocomposite of nickel-iron layered double hydroxide/molybdenum titanium carbide (NiFe-LDHs/Mo2Ti2C3) using a deep eutectic solvent (DESs) by the solvothermal method. The formation of NiFe-LDHs/Mo2Ti2C3 nanocomposite was confirmed by various electron microscopic and spectroscopic techniques. The synthesized nanocomposite was investigated as a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under the alkaline condition. The NiFe-LDHs/Mo2Ti2C3-based electrodes exhibit small overpotentials of 204 and 306 mV for HER and OER at a current density of 10 mA cm-2. The anchor of NiFe-LDHs on the surface of Mo2Ti2C3 induces an interfacial synergistic effect, leading to a significantly improvement in electrochemical performance. Remarkably, the proposed NiFe-LDHs/Mo2Ti2C3 modified electrode demonstrates superior performance compared to many recently reported LDHs and MXenes-based electrocatalysts in an alkaline environment. Furthermore, a symmetrical two-electrode water splitting setup employing the NiFe-LDHs/Mo2Ti2C3 electrocatalyst requires an electrolysis voltage of 1.65 V to achieve a current density of 10 mA cm-2. The findings provide a new perspective on the rational design and synthesis of multifunctional electrocatalysts for electrochemical applications.

12.
ACS Nano ; 18(37): 25478-25488, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236319

RESUMEN

SnSe, an environmental-friendly group-IV monochalcogenide semiconductor, demonstrates outstanding performance in various applications ranging from thermoelectric devices to solar energy harvesting. Its ultrathin films show promise in the fabrication of ferroelectric nonvolatile devices. However, the microscopic identification and manipulation of point defects in ultrathin SnSe single crystalline films, which significantly impact their electronic structure, have been inadequately studied. This study presents a comprehensive investigation of point defects in monolayer SnSe films grown via molecular beam epitaxy. By combining scanning tunneling microscopy (STM) characterization with first-principles calculations, we identified four types of atomic/molecular vacancies, four types of atomic substitutions, and three types of extrinsic defects. Notably, we have demonstrated the ability to convert a substitutional defect into a vacancy and to reposition an adsorbate by manipulating a single atom or molecule using an STM tip. We have also analyzed the local atomic displacement induced by the vacancies. This work provides a solid foundation for engineering the electronic structure of future SnSe-based nanodevices.

13.
ACS Nano ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267593

RESUMEN

Two-dimensional (2D) magnetic semiconductors offer an intriguing platform for investigating magneto-optoelectronic properties and hold immense potential in developing prospective devices when they are combined with valley electronic materials like 2D transition-metal dichalcogenides. Herein, we report various magneto-optoelectronic response features of the vertical hBN-FLG-CrI3-WSe2-FLG-hBN van der Waals heterostructure. Through a sensible layout and exquisite manipulation, an hBN-FLG-CrI3-FLG-hBN heterostructure was also fabricated on identical CrI3 and FLGs for better comparison. Our results show that the WSe2-CrI3 heterostructure, acting as a p-n heterojunction, has advantageous capability in light detection, especially in self-powered light helicity detecting. In the WSe2-CrI3 heterojunction, the absolute value of photocurrent IPH exhibits obvious asymmetry with respect to the bias V, with the IPH of reversely biased WSe2-CrI3 p-n heterojunction being larger. When the CrI3 is fully spin-polarized under a 3 T magnetic field, the reversely biased WSe2-CrI3 heterojunction exhibits advantageous capability in light helicity detecting. Both the short-circuit currents ISC and IPH show one-cycle fluctuation behaviors when the quarter-wave plate rotates 180°, and the corresponding photoresponsivity helicities can be as high as 18.0% and 20.1%, respectively. We attribute the spin-enhanced photovoltaic effect in the WSe2-CrI3 heterojunction and its contribution to circularly polarized light detection to the coordination function of the spin-filter CrI3, the valley electronic monolayer WSe2, and the spin-dependent charge transfer between them. Our work helps us understand the interplay between the magnetic and optoelectronic properties of WSe2-CrI3 heterojunctions and promotes the developing progress of prospective 2D spin optoelectronic devices.

14.
Sci Rep ; 14(1): 21219, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261493

RESUMEN

In order to explore the formation mechanism and influencing factors of the temperature difference between two ends of the plate stack, an expression of the temperature change of the stack with time was established based on the two-dimensional heat conduction equation. Based on this, the finite element model of heat transfer between a single thermoacoustic plate stack and the gas above it is established in Ansys, and the temperature of the plate stack is solved. When the sound field is constant, the variation law of the temperature of the stack with the working time and space is obtained, and the formation mechanism of the temperature difference between the two ends of the plate stack is revealed. From the calculation results, it is found that the net heat transfer between the gas and the plate stack is mainly reflected in the two ends of the plate stack, and the contribution of the air mass in the middle part is mainly the relay heat transfer. In the process of working, part of the sound work is converted into the internal energy of the air mass, which makes the gas temperature on the surface of the plate rise as a whole. The working frequency, stack length and stack thermal conductivity are taken as the influencing factors. When no load is added, the variation of the temperature of the high and low end of the stack with the working time under different working conditions is analyzed. And the theory of series between short plates is put forward to explain the formation mechanism of large temperature difference between the two ends of the plates. In order to further reduce the cooling temperature of thermoacoustic refrigerator, a new research method and exploration direction are proposed.

15.
NPJ 2D Mater Appl ; 8(1): 59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268029

RESUMEN

Quantum emitters in transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for generating single photons for optical quantum information processing. In this work, we present an approach for deterministically controlling the polarization of fabricated quantum emitters in a tungsten diselenide (WSe2) monolayer. We employ novel nanopillar geometries with long and sharp tips to induce a controlled directional strain in the monolayer, and we report on fabricated WSe2 emitters producing single photons with a high degree of polarization (99 ± 4%) and high purity (g (2)(0) = 0.030 ± 0.025). Our work paves the way for the deterministic integration of TMD-based quantum emitters for future photonic quantum technologies.

16.
Talanta ; 281: 126845, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260249

RESUMEN

This study addresses the critical need for high purity chiral molecules in biological systems by overcoming the challenges associated with the quantitative detection of chiral molecules and their enantiomeric mixtures. We developed an innovative detection approach that leverages the two-dimensional information gleaned from natural optical rotation (NOR) and Faraday optical rotation (FOR) under magnetic fields in chiral molecules, combined with an ultrahigh-resolution weak measurement sensor. This novel weak measurement system achieves unparalleled accuracy in detecting spin angles, with a precision of 1.86 × 10-5°. Notably, our method introduces no chemical reactions or interference with the substances under test. It offers enhanced discrimination capabilities through the dual-dimensional analysis of both natural and Faraday optical rotation, alongside a simple and compact sensor design. Conclusively, our study introduces a novel, high-precision, and multi-dimensional optical detection paradigm for chiral molecules. By incorporating Faraday rotation in the presence of a magnetic field, we expand the informational dimensionality accessible to the original weak measurement sensor, facilitating the quantitative analysis of chiral molecules and their enantiomers. This breakthrough not only furnishes a novel instrument for the exploration and development of chiral pharmaceuticals but also propels the advancement of weak measurement sensing technology forward.

17.
Nanomaterials (Basel) ; 14(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39269059

RESUMEN

Two-dimensional (2D) materials have emerged as a promising candidate in the chemoresistive gas sensor field to overcome the disadvantages of conventional metal-oxide semiconductors owing to their strong surface activities and high surface-to-volume ratio. This review summarizes the various approaches to enhance the 2D-material-based gas sensors and provides an overview of their progress. The distinctive attributes of semiconductor gas sensors employing 2D materials will be highlighted with their inherent advantages and associated challenges. The general operating principles of semiconductor gas sensors and the unique characteristics of 2D materials in gas-sensing mechanisms will be explored. The pros and cons of 2D materials in gas-sensing channels are discussed, and a route to overcome the current challenges will be delivered. Finally, the recent advancements to enhance the performance of 2D-material-based gas sensors including photo-activation, heteroatom doping, defect engineering, heterostructures, and nanostructures will be discussed. This review should offer a broad range of readers a new perspective toward the future development of 2D-material-based gas sensors.

18.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39269071

RESUMEN

As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.

19.
Nanomaterials (Basel) ; 14(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39269110

RESUMEN

In the attempt to induce spin-polarized states in graphene (Gr), rare-earth deposition on Gr/Co(0001) has been demonstrated to be a successful strategy: the coupling of graphene with the cobalt substrate provides spin-polarized conical-shaped states (minicone) and the rare-earth deposition brings these states at the Fermi level. In this manuscript, we theoretically explore the feasibility of an analogue approach applied on Gr/Ni(111) doped with rare-earth ions by means of density functional theory calculations. Even if not well mentioned in the literature, this system owns a minicone, similar to the cobalt case. By testing different rare-earth ions, not only do we suggest which one can provide the required doping but we also explain the effect behind this proper charge transfer.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39231382

RESUMEN

Optoelectronic logic devices (OELDs) provide a cure for many visually impaired individuals. However, traditional OELDs have limitations, such as excessive channel resistance and complex structure, leading to high supply voltage and decreased efficiency of signal transmission. We report ultralow-voltage OELDs by seriating two 2D MoTe2 transistors with sub-10 nm channel lengths. The short channel length and atomically flat interface result in a low-resistance light-sensing unit that can operate with a low supply voltage and function well in weak-light conditions. The devices achieve an on state without light signal input and an off state with light signal input at an ultralow supply voltage of 50 mV, lower than the retinal bearing voltage of 70 mV. Additionally, MoTe2's excellent optoelectronic properties allow the device to perceive light from visible to near-infrared wavelengths with high sensitivity to weak light signals. The specific perception of visible light intensity is 0.03 mW·mm-2, and the near-infrared light intensity is 0.1 mW mm-2. The device also has a response time of 8 ms, meeting human needs. Our findings provide a promising solution for developing low-voltage artificial retinas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA