Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284001

RESUMEN

Twisted bilayers host many emergent phenomena in which the electronic excitations (quasiparticles, QPs) are closely intertwined with the local stacking order. By inspecting twisted hexagonal boron nitride (t-hBN), we show that nonlocal long-range interactions in large twisted systems cannot be reliably described by the local (high-symmetry) stacking and that the band gap variation (typically associated with the moiré excitonic potential) shows multiple minima with variable depth depending on the twist angle. We investigate twist angles of 2.45°, 2.88°, 3.48°, and 5.09° using the GW approximation together with stochastic compression to analyze the QP state interactions. We find that band-edge QP hybridization is suppressed for intermediate angles that exhibit two distinct local minima in the moiré potential (at AA region and saddle point (SP)) which become degenerate for the largest system (2.45°).

2.
J Phys Condens Matter ; 36(41)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925133

RESUMEN

Extreme mechanical processes such as strong lattice distortion and bond breakage during fracture often lead to catastrophic failure of materials and structures. Understanding the nucleation and growth of cracks is challenged by their multiscale characteristics spanning from atomic-level structures at the crack tip to the structural features where the load is applied. Atomistic simulations offer 'first-principles' tools to resolve the progressive microstructural changes at crack fronts and are widely used to explore the underlying processes of mechanical energy dissipation, crack path selection, and dynamic instabilities (e.g. kinking, branching). Empirical force fields developed based on atomic-level structural descriptors based on atomic positions and the bond orders do not yield satisfying predictions of fracture, especially for the nonlinear, anisotropic stress-strain relations and the energy densities of edges. High-fidelity force fields thus should include the tensorial nature of strain and the energetics of bond-breaking and (re)formation events during fracture, which, unfortunately, have not been taken into account in either the state-of-the-art empirical or machine-learning force fields. Based on data generated by density functional theory calculations, we report a neural network-based force field for fracture (NN-F3) constructed by using the end-to-end symmetry preserving framework of deep potential-smooth edition (DeepPot-SE). The workflow combines pre-sampling of the space of strain states and active-learning techniques to explore the transition states at critical bonding distances. The capability of NN-F3is demonstrated by studying the rupture of hexagonal boron nitride (h-BN) and twisted bilayer graphene as model problems. The simulation results elucidate the roughening physics of fracture defined by the lattice asymmetry in h-BN, explaining recent experimental findings, and predict the interaction between cross-layer cracks in twisted graphene bilayers, which leads to a toughening effect.

3.
Nano Lett ; 24(26): 8017-8023, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899935

RESUMEN

We show that interlayer charge transfer in 2D materials can be driven by an in-plane electric field, giving rise to electrical multipole generation in linear and second order in-plane field. The linear and nonlinear effects have quantum geometric origins in the Berry curvature and quantum metric, respectively, defined in extended parameter spaces characteristic of layered materials. We elucidate their symmetry characters and demonstrate sizable dipole and quadrupole polarizations, respectively, in twisted bilayers and trilayers of transition metal dichalcogenides. Furthermore, we show that this effect is strongly enhanced during the topological phase transition tuned by interlayer translation. The effects point to a new electric control on the layer quantum degree of freedom.

4.
Adv Mater ; 35(3): e2206141, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36284479

RESUMEN

Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.

5.
Nano Lett ; 22(14): 5674-5680, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35759639

RESUMEN

The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moiré pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.

6.
Acta Crystallogr A Found Adv ; 77(Pt 5): 460-471, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473099

RESUMEN

A real-space approach for the calculation of the moiré lattice parameters for superstructures formed by a set of rotated hexagonal 2D crystals such as graphene or transition-metal dichalcogenides is presented. Apparent moiré lattices continuously form for all rotation angles, and their lattice parameter to a good approximation follows a hyperbolical angle dependence. Moiré crystals, i.e. moiré lattices decorated with a basis, require more crucial assessment of the commensurabilities and lead to discrete solutions and a non-continuous angle dependence of the moiré-crystal lattice parameter. In particular, this lattice parameter critically depends on the rotation angle, and continuous variation of the angle can lead to apparently erratic changes of the lattice parameter. The solutions form a highly complex pattern, which reflects number-theoretical relations between formation parameters of the moiré crystal. The analysis also provides insight into the special case of a 30° rotation of the constituting lattices, for which a dodecagonal quasicrystalline structure forms.

7.
ACS Nano ; 15(3): 4504-4517, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33651582

RESUMEN

Tailoring the grain boundaries (GBs) and twist angles between two-dimensional (2D) crystals are two crucial synthetic challenges to deterministically enable envisioned applications such as moiré excitons, emerging magnetism, or single-photon emission. Here, we reveal how twisted 2D bilayers can be synthesized from the collision and coalescence of two growing monolayer MoS2 crystals during chemical vapor deposition. The twisted bilayer (TB) moiré angles are found to preserve the misorientation angle (θ) of the colliding crystals. The shapes of the TB regions are rationalized by a kink propagation model that predicts the GB formed by the coalescing crystals. Optical spectroscopy measurements reveal a θ-dependent long-range strain in crystals with stitched grain boundaries and a sharp (θ > 20°) threshold for the appearance of TBs, which relieves this strain. Reactive molecular dynamics simulations explain this strain from the continued growth of the crystals during coalescence due to the insertion of atoms at unsaturated defects along the GB, a process that self-terminates when the defects become saturated. The simulations also reproduce atomic-resolution electron microscopy observations of faceting along the GB, which is shown to arise from the growth-induced long-range strain. These facets align with the axes of the colliding crystals to provide favorable nucleation sites for second-layer growth of a TB with twist angles that preserve the misorientation angle θ. This interplay between strain generation and aligned nucleation provides a synthetic pathway for the growth of TBs with deterministic angles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA