Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.603
Filtrar
1.
Brain Behav ; 14(9): e70036, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39295106

RESUMEN

BACKGROUND: The neurovascular unit (NVU) and neurovascular trophic coupling (NVTC) play a key regulatory role in brain injury caused by ischemic stroke. Salvianolic acids (SAL) and Panax notoginseng saponins (PNS) are widely used in China to manage ischemic stroke. Neuroprotective effects of SAL and PNS, either taken alone or in combination, were examined in this research. METHODS: Wistar rats were randomly divided into the following groups: Sham group (Sham), cerebral ischemia/reperfusion group (I/R), I/R with SAL group (SAL), I/R with PNS group (PNS), I/R with SAL combined with PNS (SAL + PNS), and I/R with edaravone group (EDA). Treatment was administered once daily for two days after modeling of middle cerebral artery occlusion/reperfusion (MCAO/R). RESULTS: Compared with the I/R group, SAL, PNS, or SAL + PNS treatment reduced infarct size, improved neurological deficit score, reduced Evans blue extravasation, increased expression of CD31 and tight junction proteins (TJs), including zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), and junctional adhesion molecule-1 (JAM-1). Furthermore, SAL, PNS, or SAL + PNS suppressed the activations of microglia and astrocyte and led to the amelioration of neuron and pericyte injury. Treatment also inhibited NVU dissociation of GFAP/PDGFRß and Collagen IV/GFAP while upregulated the expression level of BDNF/TrkB and BDNF/NeuN. CONCLUSIONS: SAL and PNS have significantly remedied structural and functional disorders of NVU and NVTC in I/R injury. These effects were more pronounced when SAL and PNS were combined than when used separately.


Asunto(s)
Fármacos Neuroprotectores , Panax notoginseng , Ratas Wistar , Daño por Reperfusión , Saponinas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Panax notoginseng/química , Saponinas/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Masculino , Ratas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/administración & dosificación , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Alquenos/farmacología , Alquenos/administración & dosificación , Modelos Animales de Enfermedad , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Quimioterapia Combinada
2.
Sci Rep ; 14(1): 21601, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285164

RESUMEN

Dietary decisions by predators can affect prey abundance and overall food web dynamics. Many predators do not forage on the same prey at the same frequency throughout their lives. Ontogenetic shifts in prey preference are not, however, often accounted for when modeling food web relationships, despite growing literature that suggests that stage specific dietary relationships may be an important consideration when modeling trophic interactions. We investigated the importance of considering size-structure of a predator population with ontogenetic diet shifts in evaluating relationships with prey response using a manipulative experiment with the brown treesnake (Boiga irregularis) in Guam. After removing ~ 40% of the snake population via toxic mammal carrion, we measured the strength of the relationship between snake density and the response of two types of prey (lizards and mammals). We evaluated these relationships based on total population size or division of the population into stage specific size categories based on diet preference predictions. We hypothesized that the density of juvenile snakes would correlate more strongly with lizard detections, while adult snakes would better correlate to rodent detections. We also measured reproductive output following changes in rates of prey detection. As expected by known ontogenetic shifts in dietary preference, explicit stage-based models better predicted shifts in rates of observed prey items than did total predator density for both lizards and mammals. Additionally, rodent detections were predictive of one reproductive pulse from snakes, while lizard detections were not predictive or correlated. Our findings support that consideration of predatory species stage-based dietary preference can be meaningful for understanding food web dynamics, particularly when a predator has a broad diet or one that changes through time.


Asunto(s)
Cadena Alimentaria , Lagartos , Conducta Predatoria , Serpientes , Animales , Conducta Predatoria/fisiología , Lagartos/fisiología , Serpientes/fisiología , Densidad de Población , Dieta , Modelos Biológicos
3.
Environ Sci Ecotechnol ; 22: 100478, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39280593

RESUMEN

Urbanization is modifying aquatic ecosystems, with hydrodynamic and trophic variations altering biotic assemblages in rapidly expanding cities worldwide. Despite the fundamental bioenergetic role of food webs within these assemblages, their responding mechanism to the hydrodynamic and trophic variations remains largely unknown. Here we show that hydrodynamic and trophic loss, coupled with the weakening of cascade controls by key trophic guilds, leads to a significant decline in the structure, function and stability of macroinvertebrate food webs. Utilizing the allometric diet breadth model and biomass balance model, we established representative food webs for macroinvertebrate groups under varying hydrodynamic and trophic stresses. We found that such losses have reduced ∼75% trophic guild richness, ∼85% biomass flux, and ∼80% biomass storage. These reductions promote trophic guild specialization, further destabilizing food web, eroding interactive strength asymmetry, and diminishing the control of trophic guilds. Furthermore, macroinvertebrate food webs show divergent stability responses under similar stress levels, mainly driven by differences in the cascade controls exerted by key trophic guilds. Our results underscore the critical role of hydrodynamic and trophic variations in shaping urban aquatic ecosystems and highlight the significance of both external environmental revitalization and internal food web dynamics enhancement in restoring the ecological stability in urban settings.

4.
J Anim Ecol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268554

RESUMEN

Clarifying the effects of biodiversity on ecosystem stability in the context of global environmental change is crucial for maintaining ecosystem functions and services. Asynchronous changes between trophic levels over time (i.e. trophic community asynchrony) are expected to increase trophic mismatch and alter trophic interactions, which may consequently alter ecosystem stability. However, previous studies have often highlighted the stabilising mechanism of population asynchrony within a single trophic level, while rarely examining the mechanism of trophic community asynchrony between consumers and their food resources. In this study, we analysed the effects of population asynchrony within and between trophic levels on community stability under the disturbances of climate warming, fishery decline and de-eutrophication, based on an 18-year monthly monitoring dataset of 137 phytoplankton and 91 zooplankton in a subtropical lake. Our results showed that species diversity promoted community stability mainly by increasing population asynchrony both for phytoplankton and zooplankton. Trophic community asynchrony had a significant negative effect on zooplankton community stability rather than that of phytoplankton, which supports the match-mismatch hypothesis that trophic mismatch has negative effects on consumers. Furthermore, the results of the structural equation models showed that warming and top-down effects may simultaneously alter community stability through population dynamics processes within and between trophic levels, whereas nutrients act on community stability mainly through the processes within trophic levels. Moreover, we found that rising water temperature decreased trophic community asynchrony, which may challenge the prevailing idea that climate warming increases the trophic mismatch between primary producers and consumers. Overall, our study provides the first evidence that population and trophic community asynchrony have contrasting effects on consumer community stability, which offers a valuable insight for addressing global environmental change.

5.
Ecol Evol ; 14(9): e70272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286316

RESUMEN

Plant-insect trophic systems should be particularly sensitive to processes altering species spatial co-occurrences, as impacts on one level can cascade effectively through the strong trophic reliance to the other level. Here, we predicted the biogeography of Lepidoptera-plant communities under global-change scenarios, exploiting spatially resolved data on 423 Lepidoptera species and their 848 food plants across the German state of Baden-Württemberg (ca. 36,000 km2). We performed simulations of plant extinction and Lepidoptera expansion, and respectively assessed their cascading consequences-namely secondary extinction of Lepidoptera and change in functional distance of plants-on the interaction networks. Importantly, the simulations were spatially explicit, as we accounted for realistic landscape contexts of both processes: Plant extinctions were simulated as "regional" (a species goes extinct in the whole region at once) vs. "isolation-driven" (a species gradually goes extinct from the peripheral or isolated localities according to its real regional distribution); Lepidoptera expansions were simulated with random, northward, and upward directions according to real topography. The consequences were assessed based on empirical community composition and trophic relationships. When evaluated by regional richness, the robustness of Lepidoptera assemblages against secondary extinctions was higher under isolation-driven plant extinctions than regional plant extinction; however, this relationship was reversed when evaluated by averaged local richness. Also, with isolation-driven plant extinctions, Lepidoptera at the central sub-region of Baden-Württemberg appeared to be especially vulnerable. With Lepidoptera expansions, plants' functional distances in local communities dropped, indicating a possible increase of competition among plants, yet to a lesser extent particularly with upward movements. Together, our results suggested that the communities' composition context at the landscape scale (i.e., how communities, with respective species composition, are arranged within the landscape) matters when assessing global-change influences on interaction systems; spatially explicit consideration of such context can reveal localised consequences that are not necessarily captured via a spatially implicit, regional perspective.

6.
Adv Biomed Res ; 13: 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224404

RESUMEN

Background: Numerous studies have confirmed the therapeutic efficacy of bone marrow-derived mesenchymal stem cells (BM-MSCs) in addressing neurologic disorders. To date, several preconditioning strategies have been designed to improve the therapeutic potential of these stem cells. This study was designed to evaluate the preconditioning effect of dimethyl fumarate (DMF) on the expression of main trophic factors in human BM-MSCs. Materials and Methods: Initially, the identity of stem cells was confirmed through the evaluation of surface markers and their capacity for osteogenic and adipogenic differentiation using flow cytometry and differentiation assay, respectively. Subsequently, stem cells were subjected to different concentrations of DMF for 72 hours and their viability was defined by MTT assay. Following 72-hour preconditioning period with 10 µM DMF, gene expression was assessed by quantitative RT-PCR. Results: Our findings demonstrated that the isolated stem cells expressed cardinal MSC surface markers and exhibited osteogenic and adipogenic differentiation potential. MTT results confirmed that 10 µM DMF was an optimal dose for maintaining cell viability. Preconditioning of stem cells with DMF significantly upregulated the expression of BDNF, NGF, and NT-3. Despite a slight increase in transcript level of GDNF and VEGF after DMF preconditioning, this difference was not statistically significant. Conclusions: Our findings suggest that DMF preconditioning can enhance the expression of major neurotrophic factors in human BM-MSCs. Given the curative potential of both BM-MSCs and DMF in various neurological disease models and preconditioning outcomes, their combined use may synergistically enhance their neuroprotective properties.

7.
Environ Pollut ; 361: 124884, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236841

RESUMEN

River ecosystems currently face a significant threat of degradation and loss of biodiversity resulting from continuous emissions of persistent organic pollutants and human activities. In this study, multi-trophic communities were assessed using DNA metabarcoding in a relatively stable riverine sediment compartment to investigate the biodiversity dynamics in the Beiluo River, followed by an evaluation of their response to polycyclic aromatic hydrocarbons (PAHs) and land use changes. A total of 48 bacterial phyla, 4 fungal phyla, 4 protist phyla, 9 algal phyla, 31 metazoan phyla, and 12 orders of fish were identified. The total concentration of PAHs in the Beiluo River sediments ranged from 25.95 to 1141.35 ng/g, with low molecular weight PAHs constituting the highest proportion (68.67%), followed by medium (22.19%) and high (9.14%) molecular weight PAHs. Notably, in contrast to lower trophic level aquatic communities such as bacteria, algae, and metazoans, PAHs exhibited a significant inhibitory effect on fish. Furthermore, the diversity of aquatic communities displayed obvious heterogeneity across distinct land use groups. A high proportion of cultivated land reduced the biodiversity of fish communities but increased that of metazoans. Conversely, an elevated proportion of built-up land reduced metazoan biodiversity, while simultaneously enhancing that of fungi and bacteria. Generally, land use changes exert both indirect and direct effects on aquatic communities. The direct effects primarily influence the abundance of aquatic communities rather than their diversity. Nevertheless, PAHs pollution may have limited potential to disrupt community structures through complex species interactions, as the hub species identified in the co-occurrence network did not align with those significantly affected by PAHs. This study indicates the potential of PAHs and land use changes to cause biodiversity losses. However, it also highlights the possibility of mitigating these negative effects in riverine sediments through optimal land use management and the promotion of enhanced species interactions.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39247954

RESUMEN

Glaciers host a variety of cold-adapted taxa, many of which have not yet been described. Interactions among glacier organisms are even less clear. Understanding ecological interactions is crucial to unravelling the functioning of glacier ecosystems, particularly in light of current glacier retreat. Through a review of the existing literature, we aim to provide a first overview of the biodiversity, primary production, trophic networks, and matter flow of a glacier ecosystem. We use the Forni Glacier (Central Italian Alps) - one of the best studied alpine glaciers in the world - as a model system for our literature review and integrate additional original data. We reveal the importance of allochthonous organic matter inputs, of Cyanobacteria and eukaryotic green algae in primary production, and the key role of springtails (Vertagopus glacialis) on the glacier surface in sustaining populations of two apex terrestrial predators: Nebria castanea (Coleoptera: Carabidae) and Pardosa saturatior (Araneae: Lycosidae). The cryophilic tardigrade Cryobiotus klebelsbergi is the apex consumer in cryoconite holes. This short food web highlights the fragility of nodes represented by invertebrates, contrasting with structured microbial communities in all glacier habitats. Although further research is necessary to quantify the ecological interactions of glacier organisms, this review summarises and integrates existing knowledge about the ecological processes on alpine glaciers and supports the importance of glacier-adapted organisms in providing ecosystem services.

9.
Glob Chang Biol ; 30(9): e17499, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239832

RESUMEN

This article is an Invited Commentary on Stephenson et al. (2024). This commentary attempts to provide broader context of the research within the body of literature on species loss and ecosystem functioning and highlights its relevance to conservation and global change.


Asunto(s)
Cambio Climático , Ecosistema , Bosques , Animales , Conservación de los Recursos Naturales , Heces/química
10.
Sci Total Environ ; 953: 175891, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218093

RESUMEN

Anthropogenic activity has disturbed the natural distribution and circulation of trace elements in the environment. This has led to increased background levels of numerous elements, causing global pollution. In this context, seabirds are relevant bioindicators of environmental contamination. This study focuses on the ecological factors that influence the concentrations of 14 trace elements in the blood of the chicks of three sympatric gull species from the French coast of the English Channel. Between 2015 and 2017, 174 birds were sampled in the industrialised Seine Estuary (in the city of Le Havre and on Ratier Island) and in the remote Chausey Islands, 200 km to the west. We also considered the Se:Hg molar ratio using Hg concentrations in those birds. Ag and V concentrations were below the quantification limit in all cases, while the fraction of non-quantified samples was higher than 30 % for Cd, Cr and Ni. Among the elements quantified in the samples, the lowest concentrations were noted for Co and the highest for Fe, building the following order: Co < Cd < Ni < Mn ≤ Pb < Cr < Hg < Cu < Se < As < Zn < Fe. No unanimous scheme of concentrations among elements, species and sites existed. Similarly, different models were fitted and different factors were significant for different species and elements. We observed the biomagnification of As and the biodilution of Pb. Pb concentrations were also highest in the industrial site in the city of Le Havre. Despite the high proportion of non-quantified samples for Cd, Cr and Ni, we continued to notice higher concentrations in the marine environment of the Chausey Islands. Concentrations of some elements clearly revealed habitat dependence. In some cases the Se:Hg molar ratio was lower than 4, a threshold for diminishing Hg toxicity by Se.

11.
Ecol Evol ; 14(9): e70290, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39257881

RESUMEN

Understanding how human activities affect wildlife is fundamental for global biodiversity conservation. Ongoing land use change and human-induced climate change, compel species to adapt their behaviour in response to shifts in their natural environments. Such responses include changes to a species' diet or trophic ecology, with implications for the wider ecosystem. This is particularly the case for predatory species or those that occupy high positions within trophic webs, such as raptors. Between 2002 and 2019, we observed 1578 feeding events of the globally near threatened and understudied, Red-necked Falcon (Falco chicquera) in Bangladesh. We explored the effects of mean monthly temperature, precipitation, temperature differences, and urban land cover on (a) mean prey weights and (b) dietary composition of 15 falcon pairs. Falcons hunted smaller prey items during months with increased temperatures and precipitation, and in more urban areas. However, during months with increased temperature differences, falcons tended to prey on larger prey items. Being specialist aerial hunters, these dietary patterns were largely driven by the probabilities of bats and birds in the diet. Falcons were more likely to prey on bats during warmer and wetter months. Furthermore, urban pairs tended to prey on bats, whereas more rural pairs tended to prey on birds. Mean monthly temperature difference, i.e., a proxy for climate change, was better at explaining the probability of bats in the falcon diet than mean monthly temperature alone. Anthropogenic dietary shifts can have deleterious effects on species with declining populations or those of conservation concern. The effects of urbanisation and human-induced climate change are expected to continue into the foreseeable future. Therefore, our findings represent a cornerstone in our understanding of how falcons respond to an increasingly human-dominated world.

12.
Mar Environ Res ; 202: 106732, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243577

RESUMEN

Spatial differences in the isotope values of widely distributed marine apex consumers may reflect geographical differences in the isotopic composition of basal resources (e.g., phytoplankton) fueling food webs (bottom-up effects) or spatial differences in the trophic ecology of the taxon of interest (top-down effects). We examined spatial variation in δ13C and δ15N values from 264 South American sea lions (SASL, Otaria flavescens) of different age classes (adults, subadults and juveniles), their putative prey consisting of pelagic and benthic coastal fishes, and particulate organic matter (POM) measured from locations situated across >2300 km of the Chilean coast (between 18°42' and 39°17' S). We used generalized least squares (GLS) models to compare the form of the relationship between δ13C and δ15N and latitude between the three functional groups. Our results show that SASL from northern, central, and southern areas were isotopically distinct, with individuals from the north having lower δ13C and higher δ15N values in comparison to individuals from the south. When the relationship for each functional group was modelled individually using GLS, results indicated that for each degree of increasing latitude δ15N decreased on average by 0.12‰ (POM), 0.15‰ (prey), and 0.14‰ (SASL), while δ13C increased by 0.06‰ (POM) and 0.05‰ in both prey and SASL. We suggest that the latitudinal differences observed in SASL δ13C and δ15N values reflect baseline isotopic variation rather than marked differences in trophic ecology of these widely distributed consumers.

13.
Sci Total Environ ; 952: 175855, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39214352

RESUMEN

Highly urbanized coastal ecosystems are vital in the global carbon budget. However, there are limited researches on carbon flux gradients in these nearshore areas, considering both natural and anthropogenic influences. Through on-site measurements and field samplings during wet-to-dry season in 2023, this study investigated spatial variations and factors affecting carbon fluxes, focusing on the impacts of salinity and eutrophic status in five geographically connected coastal waters of the Guangdong-Hong Kong-Macau Greater Bay Area (GBA). By estimating carbon exchange at land-sea-air interface, dominant processes in carbon dynamics were identified as well. Results showed that partial pressure of CO2 (pCO2) varied from 391 to 2290 µatm, and sea-air CO2 exchange fluxes (FCO2) ranged from -3.07 to 70.07 mmol m-2 d-1, indicating significant geographical distinctions among five coastal waters of the GBA. The total carbon transport from rivers to these nearshore waters was approximated at 6.44 Tg C yr-1, with the Pearl River (PR) contributing 99.7%, primarily in dissolved forms. Atmospheric CO2 release was calculated at 0.29 Tg C yr-1 for studied five coastal waters, primarily as carbon sources, except for Dapeng Bay (DPB) as a sink. CO2 emissions inversely correlated with salinity, yet positively with eutrophication status, particularly in river-dominated estuaries. Moreover, CO2 flux decreased 23 times as eco-status shift from eutrophic to non-eutrophic. River plumes, terrestrial pollutant inputs, and economic structure were underlying drivers, influencing carbon species concentrations and fluxes. Elevated CO2 concentrations in eutrophic coastal waters were mainly attributed to terrestrial carbon and nutrients inputs, supporting active biological respiration and microbial decomposition. Conversely, carbon dynamics potentially depend on the balance of respiration and photosynthesis in non-eutrophic coastal waters. This study offers high geographic precision and specificity of carbon species, and provides land-sea integration insight to understand carbon dynamic mechanisms, promoting advancements in water quality management and climate mitigation.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Urbanización , Carbono/análisis , Ciclo del Carbono , Eutrofización , China , Dióxido de Carbono/análisis , Agua de Mar/química , Salinidad
14.
Sci Total Environ ; 954: 175067, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111421

RESUMEN

Phytoplankton overgrowth, which characterizes the eutrophication or trophic status of surface water bodies, threatens ecosystems and public health. Quantitative polymerase chain reaction (qPCR) is promising for assessing the abundance and community composition of phytoplankton. However, applications of qPCR to indicate eutrophication and trophic status, especially in lotic systems, have yet to be comprehensively evaluated. For the first time, this study correlates qPCR-based phytoplankton abundance with chlorophyll a (the most widely used indicator of eutrophication and trophic status) in multiple freshwater rivers. From early summer to late fall in 2017, 2018, and 2019, we evaluated phytoplankton, chlorophyll a, pheophytin a, and the Trophic Level Index (TLI) in twelve large freshwater rivers in three regions (western, midcontinent, and eastern) in the United States. Chlorophyll a concentration had positive allometric correlations with qPCR-based phytoplankton abundance (adjusted R2 = 0.5437, p-value < 0.001), pheophytin a concentration (adjusted R2 = 0.3378, p-value <0.001), and TLI (adjusted R2 = 0.4789, p-value < 0.001). Thus, a greater phytoplankton abundance suggests a higher trophic status. This work also presents the numerical values of qPCR-based phytoplankton abundance defining the boundaries among trophic statuses (e.g., oligotrophic, mesotrophic, and eutrophic) of freshwater rivers. The sampling sites in the midcontinent rivers were more eutrophic because they had significantly higher chlorophyll a concentrations, pheophytin a concentrations, and TLI values than the sites in the western and eastern rivers. The higher phytoplankton abundance at the midcontinent sites confirmed their higher trophic status. By linking qPCR-based phytoplankton abundance to chlorophyll a, this study demonstrates that qPCR is a promising avenue to investigate the population dynamics of phytoplankton and the trophic status (or eutrophication) of freshwater rivers.

15.
Sci Total Environ ; 950: 174999, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39097011

RESUMEN

The patchy distribution of microplastics (MP) and their size range similar to planktonic organisms, are likely to have major ecological consequences, through MP ingestion, food dilution, and transfer across trophic levels. Our study applied a community module using tritrophic food chain with zooplankton as prey, and a planktivorous seabass fry as predator. We conducted a series of feeding experiments and recorded the direct uptake of MP under six different concentrations ranging from 25 to 800 particles L-1. We also estimated the indirect transfer of MP via trophic link. The ingestion rates for Brachionus plicatilis, Mesocyclops isabellae, and Lates calcarifer, were 3.7 ± 0.3 MP ind-1 min-1, 1.69 ± 0.1 MP ind-1 min-1, and 3.51 ± 0.52 MP ind-1 h-1, respectively. In the presence of a natural diet, rotifers and copepods ingested significantly lower number, whereas, fish fry ingested a higher number of MP, suggesting further vulnerability to the consumers of MP-contaminated fish and potential biomagnification at higher trophic levels. Overall, the MP uptake rate increased with increasing concentration, and finally leveled off, indicating a type II functional response to MP concentration. The presence of natural diet led to a lower Km value. In the indirect transfer experiment, 74 % of B. plicatilis and 78 % of M. isabellae individuals were contaminated with MP, when offered as prey. Brachionid mastax and MP particles were observed in the gut of copepods. The fish fry gut content also recorded brachionid mastax, MP-contaminated copepods, and MP particles, showing direct evidence of trophic transfer pointing to a cascading effect on higher trophic levels including humans via piscivory.


Asunto(s)
Cadena Alimentaria , Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Animales , Zooplancton/fisiología , Dieta , Monitoreo del Ambiente , Copépodos/fisiología , Rotíferos/fisiología
16.
J Environ Manage ; 368: 122121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39121623

RESUMEN

Grazing plays a key role in ecosystem biogeochemistry, particularly soil carbon (C) pools. The non-trophic interactions between herbivores and soil processes through herbivore trampling have recently attracted extensive attention. However, their concurrent and legacy effects on the ecosystem properties and processes are still not clear, due to their effects being hard to separate via field experiments. In this study, we conducted a 2-year simulated-sheep-trampling experiment with four trampling intensity treatments (i.e., T0, T40, T80, and T120 for 0, 40, 80, and 120 hoofprints m-2, respectively) in a typical steppe to explore the concurrent and legacy effects of trampling on grassland ecosystem properties and processing. In 2017 (trampling treatment year), we found that trampling decreased aboveground biomass (AGB) of plant community and community-weighted mean shoot C concentration (CWM C), soil available nitrogen (N) and available phosphorus (P), but did not affect plant species diversity and belowground biomass (BGB). We show that compared with T0, trampling increased soil bulk density (BD) at T80, and decreased soil organic carbon (SOC) stocks. After the cessation of trampling for two years (i.e., in 2019), previous trampling increased plant diversity and BGB, reaching the highest values at T80, but decreased soil available N and available P. Compared with T0, previous trampling significantly increased soil BD at T120, while significantly decreased CWM C at T80 and T120, and reduced SOC stocks at T80. Compared with 2017, the trampling negative legacy effects amplified at T80 but weakened at T40 and T120. We also show that trampling-induced decreases in soil available N, AGB of Fabaceae and CWM C were the main predictors of decreasing SOC stocks in 2017, while previous trampling-induced legacy effects on soil available P, AGB of Poaceae and CWM C contributed to the variations of SOC stocks in 2019. Taken together, short-term trampling with low intensity could maintain most plant functions, while previous trampling with low intensity was beneficial to most plant and soil functions. The results of this study show that T40 caused by sheep managed at a stocking rate of 2.7 sheep ha-1 is most suitable for grassland adaptive management in the typical steppe. The ecosystem functions can be maintained under a high stocking rate through the process of providing enough time to rebuild sufficient vegetation cover and restore soil through measures such as regional rotational grazing and seasonal grazing.


Asunto(s)
Carbono , Ecosistema , Suelo , Suelo/química , Carbono/análisis , Animales , China , Ovinos , Pradera , Biomasa , Herbivoria , Nitrógeno/análisis
17.
Environ Sci Technol ; 58(36): 16131-16141, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39190601

RESUMEN

Liquid crystal monomers (LCMs) are emerging organic pollutants due to their potential persistence, toxicity, and bioaccumulation. This study first characterized the levels and compositions of 19 LCMs in organisms in the Pearl River Estuary (PRE), estimated their bioaccumulation and trophic transfer potential, and identified priority contaminants. LCMs were generally accumulated in organisms from sediment, and the LCM concentrations in all organisms ranged from 32.35 to 1367 ng/g lipid weight. The main LCMs in organisms were biphenyls and analogues (BAs) (76.6%), followed by cyanobiphenyls and analogues (CBAs) (15.1%), and the least were fluorinated biphenyls and analogues (FBAs) (11.2%). The most abundant LCM monomers of BAs, FBAs, and CBAs in LCMs in organisms were 1-(4-propylcyclohexyl)-4-vinylcyclohexane (15.1%), 1-ethoxy-2,3-difluoro-4-(4-(4-propylcyclohexyl) cyclohexyl) benzene (EDPBB, 10.1%), and 4'-propoxy-4-biphenylcarbonitrile (5.1%), respectively. The niche studies indicated that the PRE food web was composed of terrestrial-based diet and marine food chains. Most LCMs exhibited biodilution in the terrestrial-based diet and marine food chains, except for EDPBB and 4,4'-bis(4-propylcyclohexyl) biphenyl (BPCHB). The hydrophobicity, position of fluorine substitution of LCMs, and biological habits may be important factors affecting the bioaccumulation and trophic transfer of LCMs. BPCHB, 1-(prop-1-enyl)-4-(4-propylcyclohexyl) cyclohexane, and EDPBB were characterized as priority contaminants. This study first reports the trophic transfer processes and mechanisms of LCMs and the biomonitoring in PRE.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Ríos , Contaminantes Químicos del Agua , Ríos/química , Cadena Alimentaria , Cristales Líquidos , Animales
18.
Sci Total Environ ; 951: 175450, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134270

RESUMEN

Reservoir nearshore areas are influenced by both terrestrial and aquatic ecosystems, making them sensitive regions to water quality changes. The analysis of basin landscape hydrological features provides limited insight into the spatial heterogeneity of eutrophication in these areas. The complex characteristics of shoreline morphology and their impact on eutrophication are often overlooked. To comprehensively analyze the complex relationships between shoreline morphology and landscape hydrological features, with eutrophication, this study uses Danjiangkou Reservoir as a case study. Utilizing Landsat 8 OLI remote sensing data from 2013 to 2022, combined with a semi-analytical approach, the spatial distribution of the Trophic State Index (TSI) during flood discharge periods (FDPs) and water storage periods (WSPs) was obtained. Using Extreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP), explained the relationships between landscape composition, landscape configuration, hydrological topography, shoreline morphology, and TSI, identified key factors at different spatial scales and validated their reliability. The results showed that: (1) There is significant spatial heterogeneity in the TSI distribution of Danjiangkou Reservoir. The eutrophication levels are significant in the shoreline and bay areas, with a tendency to extend inward only during the WSPs. (2) The importance of landscape composition, landscape configuration, hydrological topography, and shoreline morphology to TSI variations during the FDPs are 25.12 %, 29.6 %, 23.09 %, and 22.19 % respectively. Besides shoreline distance, the Landscape Shape Index (LSI) and Hypsometric Integral (HI) are the two most significant environmental variables overall during the FDPs. Forest and grassland areas become the most influential factors during the WSPs. The influence of landscape patterns and hydrological topography on TSI varies at different spatial scales. At the 200 m riparian buffer zone, the increase in cropland and impervious areas significantly elevates eutrophication levels. (3) Morphology complexity, shows a noticeable threshold effect on TSI, with complex shoreline morphology increasing the risk of eutrophication.

19.
Curr Biol ; 34(17): 3931-3940.e5, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39151433

RESUMEN

Rewilding seeks to address biodiversity loss by restoring trophic interactions and fostering self-regulating ecosystems. Although gaining traction in Europe and North America, the extent to which rewilding can meet post-2020 protected-area targets remains uncertain. We formulated criteria to map suitable areas for rewilding by identifying large tracts of land with minimal human disturbances and the presence of key mammal species. We find that one-quarter of Europe, approximately 117 million hectares (ha), is compatible with our rewilding criteria. Of these, 70% are in cooler climates. Passive rewilding opportunities, focused on managing existing wilderness, are predominant in Scandinavia, Scotland, the Iberian Peninsula, and notably in the Baltic states, Ireland, and southeastern Europe. Active rewilding opportunities, marked by reintroduction of absent trophic guilds, are identified in Corsica, Sardinia, southern France, and parts of the Netherlands, Denmark, Sweden, and Norway. Our mapping supports European nations in leveraging land abandonment to expand areas for nature conservation, aligning with the European Biodiversity Strategy for 2030. Nevertheless, countries with limited potential for rewilding should consider alternative conservation strategies.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Europa (Continente) , Animales , Ecosistema , Mamíferos
20.
ACS Nano ; 18(37): 25552-25564, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39171664

RESUMEN

During agricultural production, significant quantities of copper-based nanopesticides (CBNPs) may be released into terrestrial ecosystems through foliar spraying, thereby posing a potential risk of biological transmission via food chains. Consequently, we investigated the trophic transfer of two commonly available commercial CBNPs, Reap2000 (RP) and HolyCu (HC), in a plant-caterpillar terrestrial food chain and evaluated impacts on host microbiota. Upon foliar exposure (with 4 rounds of spraying, totaling 6.0 mg CBNPs per plant), leaf Cu accumulation levels were 726 ± 180 and 571 ± 121 mg kg-1 for RP and HC, respectively. HC exhibited less penetration through the cuticle compared to RP (RP: 55.5%; HC: 32.8%), possibly due to size exclusion limitations. While caterpillars accumulated higher amounts of RP, HC exhibited a slightly higher trophic transfer factor (TTF; RP: 0.69 ± 0.20; HC: 0.74 ± 0.17, p > 0.05) and was more likely to be transferred through the food chain. The application of RP promoted the dispersal of phyllosphere microbes and perturbed the original host intestinal microbiota, whereas the HC group was largely host-modulated (control: 65%; RP: 94%; HC: 34%). Integrating multiomics analyses and modeling approaches, we elucidated two pathways by which plants exert bottom-up control over caterpillar health. Beyond the direct transmission of phyllosphere microbes, the leaf microbiome recruited upon exposure to CBNPs further influenced the ingestion behavior and intestinal microbiota of caterpillars via altered leaf metabolites. Elevated Proteobacteria abundance benefited caterpillar growth with RP, while the reduction of Proteobacteria with HC increased the risk of lipid metabolism issues and gut disease. The recruited Bacteroidota in the RP phyllosphere proliferated more extensively into the caterpillar gut to enhance stress resistance. Overall, the gut microbes reshaped in RP caterpillars exerted a strong regulatory effect on host health. These findings expand our understanding of the dynamic transmission of host-microbiota interactions with foliar CBNPs exposure, and provide critical insight necessary to ensure the safety and sustainability of nanoenabled agricultural strategies.


Asunto(s)
Cobre , Cadena Alimentaria , Microbiota , Cobre/química , Animales , Microbiota/efectos de los fármacos , Plaguicidas/metabolismo , Plaguicidas/química , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA