Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930340

RESUMEN

In this study, the ball-on-disk sliding wear and tribocorrosion behavior in the H2SO4 and HCl solution of NiCoCrMoCu alloys with carbon additions of 0.2, 1, 1.5, and 2 wt.% with the Al2O3 ball as a counterpart was investigated systematically. Obvious tribocorrosion antagonistic effects were found after wear in both aqueous solutions. Compared with dry sliding wear conditions, the lubrication effect of the aqueous solution significantly reduces the wear rate of the alloy, and the reduction effect in the H2SO4 aqueous solution was more obvious than that in HCl. The antagonistic effects of the 0.2C and 1C alloys decrease with the load and sliding rate, while those of the 1.5C and 2C alloys increase. The (coefficient of friction) COF and wear rate under different loads and sliding rates were analyzed using the response surface analysis (RSM) method. It was found that the COF mainly showed dependence on the sliding rate, while the wear rate showed dependence on load and sliding speed.

2.
Materials (Basel) ; 17(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38793363

RESUMEN

Surgical ASTM F139 stainless steel is used for temporary fixtures in the biomedical field. Tribocorrosion is a major concern in this application. The aim of the present work was to study the interplay between tribocorrosion behavior and the surface chemistry of the ASTM F139 stainless steel in phosphate-buffered saline solution (PBS). Sliding wear tests were conducted against alumina balls at different electrochemical potentials: open circuit potential (OCP), cathodic potential (-100 mV versus the OCP), and anodic potentials (+200 mVAg/AgCl and +700 mVAg/AgCl). The normal load was 20 N. The wear volume was estimated based on micrographs obtained from the wear tracks using confocal laser scanning microscopy. Moreover, the wear tracks were also examined by scanning electron microscopy (SEM). The surface chemistry of the ASTM F139 specimens was analyzed by X-ray photoelectron spectroscopy (XPS). The wear volume was dependent on the electrochemical potential, being maximized at +700 mVAg/AgCl. Delamination areas and grooves were observed in the wear tracks. Detailed assessment of the surface chemistry inside the wear tracks allowed identification of the main chemical species and their relative quantities, thus enabling correlation of the passive film composition with the observed tribocorrosion behavior.

3.
Materials (Basel) ; 17(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793394

RESUMEN

This study investigates the tribocorrosion performance of a cast Co-Cr-Mo alloy prepared using casting and electromagnetic stirring (EMS) at specific frequencies. The tribocorrosion behaviour of the alloy was evaluated when exposed to Ringer's lactate solution to optimize the EMS parameters and improve its properties. The research focuses on biomedical implant applications and explores how EMS affects alloy wear and corrosion resistance. As did the friction coefficient and wear volume, the wear rate of samples produced with EMS frequencies of 75 Hz and 150 Hz decreased. These improvements are attributed to the ability of EMS to refine grain size and homogenize the microstructure, thereby increasing the resistance to tribocorrosion. Techniques such as scanning electron microscopy (SEM) and profilometry were used for surface and wear analysis, while mechanical properties were evaluated through instrumented indentation tests. The findings confirm that EMS improves the alloy's durability and tribocorrosion resistance, making it highly suitable for demanding biomedical applications such as joint replacements. This highlights the importance of advanced manufacturing techniques in optimizing biomedical alloys for simulated body conditions.

4.
J Taibah Univ Med Sci ; 19(3): 644-663, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807965

RESUMEN

With the advancements in dental science and the growing need for improved dental health, it has become imperative to develop new implant materials which possess better geometrical, mechanical, and physical properties. The oral environment is a corrosive environment and the relative motion between the teeth also makes the environment more hostile. Therefore, the combined corrosion and tribology commonly known as tribocorrosion of implants needs to be studied. The complex shapes of the dental implants and the high-performance requirements of these implants make manufacturing difficult by conventional manufacturing processes. With the advent of additive manufacturing or 3D-printing, the development of implants has become easy. However, the various requirements such as surface roughness, mechanical strength, and corrosion resistance further make the manufacturing of implants difficult. The current paper reviews the various studies related to3D-printed implants. Also, the paper tries to highlight the role of 3D-Printing can play in the area of dental implants. Further studies both experimental and numerical are needed to devise optimized conditions for 3D-printing implants to develop implants with improved mechanical, corrosion, and biological properties.

5.
J Biomed Mater Res A ; 112(11): 1941-1959, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38775427

RESUMEN

In this work, a sequential covalent immobilization of graphene oxide (GO) and hyaluronic acid (HA) is performed to obtain a biocompatible wear-resistant nanocoating on the surface of the biomedical grade cobalt-chrome (CoCr) alloy. Nanocoated CoCr surfaces were characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) in 3 g/L HA electrolyte. Tribocorrosion tests of the nanocoated CoCr surfaces were carried out in a pin on flat tribometer. The biological response of covalently HA/GO biofunctionalized CoCr surfaces with and without wear-corrosion processes was studied through the analysis of the proteome of macrophages. Raman spectra revealed characteristic bands of GO and HA on the functionalized CoCr surfaces. The electrochemical response by EIS showed a stable and protective behavior over 23 days in the simulated biological environment. HA/GO covalently immobilized on CoCr alloy is able to protect the surface and reduce the wear volume released under tribocorrosion tests. Unsupervised classification analysis of the macrophage proteome via hierarchical clustering and principal component analysis (PCA) revealed that the covalent functionalization on CoCr enhances the macrophage biocompatibility in vitro. On the other hand, disruption of the HA/GO nanocoating by tribocorrosion processes induced a macrophage proteome which was differently clustered and was distantly located in the PCA space. In addition, tribocorrosion induced an increase in the percentage of upregulated and downregulated proteins in the macrophage proteome, revealing that disruption of the covalent nanocoating impacts the macrophage proteome. Although macrophage inflammation induced by tribocorrosion of HA/GO/CoCr surfaces is observed, it is ameliorated by the covalently grafting of HA, which provides immunomodulation by eliciting downregulations in characteristic pro-inflammatory signaling involved in inflammation and aseptic loosening of CoCr joint arthroplasties. Covalent HA/GO nanocoating on CoCr provides potential applications for in vivo joint prostheses led a reduced metal-induced inflammation and degradation by wear-corrosion.


Asunto(s)
Aleaciones de Cromo , Grafito , Ácido Hialurónico , Macrófagos , Grafito/química , Ácido Hialurónico/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Animales , Ratones , Corrosión , Aleaciones de Cromo/química , Proteómica , Células RAW 264.7 , Proteoma , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología
6.
ACS Appl Bio Mater ; 7(5): 3096-3109, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764432

RESUMEN

Wire arc additive manufacturing (WAAM) holds promise for producing medium to large industrial components. Application of WAAM in the manufacturing of biomedical materials has not yet been evaluated. The current study addresses two key research questions: first, the suitability of the WAAMed Ti6Al4V alloy for biomedical applications, and second, the effect of Ti6Al4V's constituents (α and ß phases) on the cell viability. The WAAMed Ti6Al4V alloy was fabricated (as-deposited: AD) using a metal inert gas (MIG)-based wire arc system using an in-house designed shielding chamber filled with argon. Subsequently, samples were subjected to solution treatment (950 °C for 1 h), followed by aging at 480 °C (T1), 530 °C (T2), and 580 °C (T3) for 8 h and subsequent normalization to ambient conditions. Microstructural analysis revealed ∼45.45% of α'-Ti colonies in the as-deposited samples, reducing to 23.26% postaging at 580 °C (T3). The α-lath thickness and interstitial oxygen content in the sample were observed to be proportional to the aging temperature, peaking at 580 °C (T3). Remarkably, during tribocorrosion analysis in simulated body fluid, the 580 °C-aged T3 sample displayed the lowest corrosion rate (7.9 µm/year) and the highest coefficient of friction (CoF) at 0.58, showing the effect of increasing oxygen content in the alloy matrix. Cell studies showed significant growth at 530 and 580 °C by day 7, correlated with higher oxygen content, while other samples had declining cell density. Additionally, optimal metallurgical property ranges were identified to enhance the Ti6Al4V alloy's biocompatibility, providing crucial insights for biomedical implant development.


Asunto(s)
Aleaciones , Materiales Biocompatibles , Supervivencia Celular , Calor , Ensayo de Materiales , Titanio , Titanio/química , Aleaciones/química , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ratones , Propiedades de Superficie
7.
J Mech Behav Biomed Mater ; 152: 106449, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387118

RESUMEN

Metal alloy microstructure plays a crucial role in corrosion associated with total hip replacement (THR). THR is a prominent strategy that uses metal implants such as cobalt-chromium-molybdenum (CoCrMo) alloys due to their advantageous biological and mechanical properties. Despite all benefits, these implants undergo corrosion and wear processes in-vivo in a synergistic manner called tribocorrosion. Also, the implant retrieval findings reported that fretting corrosion occurred in-vivo, evidenced by the damage patterns that appeared on the THR junction interfaces. There is no scientific data on the studies reporting the fretting corrosion patterns of CoCrMo microstructures in the presence of specific biological treatments to date. In the current study, Flat-on-flat fretting corrosion set-up was customized and used to study the tribocorrosion patterns of fretting corrosion to understand the role of alloy microstructure. Alloy microstructural differences were created with the implant stock metal's longitudinal and transverse cutting orientations. As a result, the transverse created the non-banded, homogenous microstructure, whereas the longitudinal cut resulted in the banded, non-homogenous microstructure on the surface of the alloy (in this manuscript, the terms homogenous and banded were used). The induced currents were monitored using a three-electrode system. Three different types of electrolytes were utilized to study the fretting corrosion patterns with both homogeneous and banded microstructures: 1. Control media 2. Spent media (the macrophage cell cultured media) 3. Challenged media (media collected after the macrophage was treated with CoCrMo particles). From the electrochemical results, in the potentiostat conditions, the banded group exhibited a higher induced current in both challenged and spent electrolyte environments than in control due to the synergistic activity of CoCrMo particles and macrophage demonstrating more corrosion loss. Additionally, both Bode and Nyquist plots reported a clear difference between the banded and homogeneous microstructure, especially with challenged electrolytes becoming more corrosion-resistant post-fretting than pre-fretting results. The banded microstructure showed a unique shape of the fretting loop, which may be due to tribochemical reactions. Therefore, from the electrochemical, mechanical, and surface analysis data results, the transverse/homogenous/non-banded alloy microstructure groups show a higher resistance to fretting-corrosion damage.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Corrosión , Aleaciones , Cromo , Cobalto , Molibdeno , Electrólitos
8.
Heliyon ; 10(4): e25867, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384552

RESUMEN

Wear (erosion/abrasion) and corrosion act in synergy in several industrial installations where corrosive fluids circulate together with a solid phase causing mutual damage. High entropy alloys (HEAs) are promising materials to be used in that type of environments because of their outstanding chemical, electrochemical and mechanical properties. While several review articles are currently available on corrosion, mechanical properties, development of HEAs, microstructure, and HEA coatings, there is an undeniable lack of a comprehensive and critical review focusing on the tribological behaviour and tribocorrosion of bulk HEAs. This work aims to collect, summarise, and critically review the major accomplishments and progresses of HEAs over the last 20 years dealing with wear, corrosion, and wear-corrosion resistance. It highlights the most significant aspects that can influence the performance of HEAs including the change of the base alloying elements, the influence of the temperature, heat treatment, and wear test parameters (load, velocity, duration, distance). Furthermore, operating mechanisms, together with the relationship between microstructure and wear resistance, and between microstructure and corrosion resistance will be described. Finally, the articles that have been reported in the literature dealing with tribocorrosion of HEAs will be reviewed. The results of this study are expected to guide potential researchers and provide them with the sum of current trends in HEAs in terms of corrosion resistance, wear resistance and the synergy of both, in the hope of helping them to make the right decision to design and develop new HEAs or improve the research on the existing ones.

9.
J Funct Biomater ; 15(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38391891

RESUMEN

Additive manufacturing (AM) of orthopedic implants has increased in recent years, providing benefits to surgeons, patients, and implant companies. Both traditional and new titanium alloys are under consideration for AM-manufactured implants. However, concerns remain about their wear and corrosion (tribocorrosion) performance. In this study, the effects of fretting corrosion were investigated on AM Ti-29Nb-21Zr (pre-alloyed and admixed) and AM Ti-6Al-4V with 1% nano yttria-stabilized zirconia (nYSZ). Low cycle (100 cycles, 3 Hz, 100 mN) fretting and fretting corrosion (potentiostatic, 0 V vs. Ag/AgCl) methods were used to compare these AM alloys to traditionally manufactured AM Ti-6Al-4V. Alloy and admixture surfaces were subjected to (1) fretting in the air (i.e., small-scale reciprocal sliding) and (2) fretting corrosion in phosphate-buffered saline (PBS) using a single diamond asperity (17 µm radius). Wear track depth measurements, fretting currents and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of oxide debris revealed that pre-alloyed AM Ti-29Nb-21Zr generally had greater wear depths after 100 cycles (4.67 +/- 0.55 µm dry and 5.78 +/- 0.83 µm in solution) and higher fretting currents (0.58 +/- 0.07 µA). A correlation (R2 = 0.67) was found between wear depth and the average fretting currents with different alloys located in different regions of the relationship. No statistically significant differences were observed in wear depth between in-air and in-PBS tests. However, significantly higher amounts of oxygen (measured by oxygen weight % by EDS analysis of the debris) were embedded within the wear track for tests performed in PBS compared to air for all samples except the ad-mixed Ti-29Nb-21Zr (p = 0.21). For traditional and AM Ti-6Al-4V, the wear track depths (dry fretting: 2.90 +/- 0.32 µm vs. 2.51 +/- 0.51 µm, respectively; fretting corrosion: 2.09 +/- 0.59 µm vs. 1.16 +/- 0.79 µm, respectively) and fretting current measurements (0.37 +/- 0.05 µA vs. 0.34 +/- 0.05 µA, respectively) showed no significant differences. The dominant wear deformation process was plastic deformation followed by cyclic extrusion of plate-like wear debris at the end of the stroke, resulting in ribbon-like extruded material for all alloys. While previous work documented improved corrosion resistance of Ti-29Nb-21Zr in simulated inflammatory solutions over Ti-6Al-4V, this work does not show similar improvements in the relative fretting corrosion resistance of these alloys compared to Ti-6Al-4V.

10.
Adv Appl Ceram ; 122(3-4): 236-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38108047

RESUMEN

Carbide-derived carbon (CDC) was previously proposed as a surface modification method for hip implant applications since it showed excellent tribocorrosion performance under open-circuit potential (OCP) conditions. Nonetheless, a systematic evaluation of CDC's tribocorrosion properties was still missing. Therefore, our objective is to test CDC's tribocorrosion performance under various electrochemical conditions and to identify the synergism between wear and corrosion. Based on the findings, the variations in OCP for CDC (0.626 mV) is smaller than Ti6Al4V (1.91 mV), and CDC showed lower induced current than T6Al4V for all potentials, suggesting CDC is more stable than Ti6Al4V under tribocorrosive conditions. Eventually, the weight loss of Ti6Al4V (50.662±5.19 µg) was found to be significantly higher than that of CDC (4.965±5.19 µg), which agrees with the electrochemical results. In summary, CDC showed better tribocorrosion performance than Ti6Al4V and was determined as an Antagonism regime.

11.
J Funct Biomater ; 14(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38132818

RESUMEN

The interaction of different dental alloys with the oral environment may cause severe side effects (e.g., burning sensation, inflammatory reactions, carcinogenesis) as a result of oral galvanism. However, the pathogenesis of side effects associated with oral galvanism is still unclear, and the effects of direct current and alloy corrosion ions are considered potentially contributing factors. Therefore, the aim of this study was to systemically compare the damaging effects of (1) galvanism as a synergistic process (direct current + corrosion ions), (2) direct current separately, and (3) corrosion ions separately on an in vitro mucosa-like model based on a cell line of immortalized human keratinocytes (HaCaTs) to reveal the factors playing a pivotal role in dental alloys side effects. For this, we chose and compared the dental alloys with the highest risk of oral galvanism: Ti64-AgPd and NiCr-AgPd. We showed that galvanic current may be the leading damaging factor in the cytotoxic processes associated with galvanic coupling of metallic intraoral appliances in the oral cavity, especially in the short-term period (28 days). However, the contribution of corrosion ions (Ni2+) to the synergistic toxicity was also shown, and quite possibly, in the long term, it could be no less dangerous.

12.
Biotribology (Oxf) ; 35-362023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37900899

RESUMEN

Metal wear and corrosion debris remain a limiting factor for long-term durability of total hip replacement (THR). Common wear particle production techniques for research differ from the actual tribocorrosion processes at the implant site, potentially causing loss of valuable information. The aim of this study was to investigate reactions to freshly generated and time-stabilized particles and ions released from CoCrMo-alloy using a bio-tribometer, which mimics conditions of the periprosthetic environment. THP-1 macrophages were challenged with freshly produced or time-stabilized wear debris. Wear generation took place in a custom-built bio-tribometer inside a CO2 incubator operating with a reciprocating rotation of an Al2O3 ball against a CoCrMo disc. Two different electrochemical conditions with increasingly forced corrosion rates were tested: +0.45 V (passive domain) and +0.67 V (transition to transpassive domain). Cell viability, proinflammatory cytokines, electrochemical measurements and ICP-MS metal ion content analyses were performed. Cobalt/ chromium concentrations were 6.6/ 1.6 ppm in the passive domain and almost doubled to 11.4/ 3.0 ppm in the passive-transpassive domain. Under those electrochemical conditions, freshly produced and time-stabilized CoCrMo wear decreased cell viability to the same extent. Secretion of proinflammatory cytokines were not significantly different for freshly produced and time-stabilized debris. This study suggests that freshly generated and time-stabilized metal particles/ions cause similar toxicity and inflammatory reactions in macrophages, indicating that standard practices for generating wear debris are valid methods to evaluate wear particle disease. Other cell types, materials, and corrosion potentials need to be studied in the future to solidify the conclusion.

13.
Materials (Basel) ; 16(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37629920

RESUMEN

AlCrTiZrMo high-entropy alloy (HEA) films with strong amorphization were obtained by co-filter cathode vacuum arc deposition, and the effect of thermal shock on the films was investigated in order to explore the protection mechanism of HEA films against mechanical components in extreme service environments. The results show that after annealing at 800 °C for 1 h, the formation of a dense ZrTiO4 composite oxide layer on the surface actively prevents the oxidation from continuing, so that the AlCrTiZrMo HEA film exhibits excellent oxidation resistance at 800 °C in air. In the friction-corrosion coupling environment, the AlCrTiZrMo HEA film annealed at 800 °C for 1 h shows the best tribocorrosion resistance due to the stable dense microstructure and excellent mechanical properties, and its ΔOCP, COF and wear rate possess the smallest values of 0.055, 0.04 and 1.34 × 10-6 mm-3·N-1·m-1.

14.
J Mech Behav Biomed Mater ; 145: 106008, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423010

RESUMEN

The purpose of this systematic review and meta-analysis was to compare the results of tribocorrosion in titanium alloys of dental implants submitted to surface treatment with those whose treatment was not performed. An electronic search was carried out on the MEDLINE (PubMed), Web of Science, Virtual Health Library and Scopus databases. The search strategy used was PECO: Participants (P): titanium alloys; Exposure (E): surface treatment; Comparison (C): absence of surface treatment; and Result/Outcome (O): tribocorrosion. The search found a total of 336 articles, where 27 was selected by title or abstract, resulted to 10 after reading in full. The treatments that formed the rutile layer had better tribological results and therefore better protected the material from mechanical and chemical degradation, contrary to the technique with the addition of nanotubes. It was concluded that the surface treatment proves to be efficient to protect metals from mechanical and chemical wear.


Asunto(s)
Aleaciones , Implantes Dentales , Humanos , Titanio , Corrosión , Propiedades de Superficie
15.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374468

RESUMEN

This research was carried out with the aim of obtaining appropriate principles for describing the influence of working parameters and the aggressive action of an acidic medium on the wear and corrosion resistance of martensitic stainless steels. Tribological tests were performed on induction-hardened surfaces of stainless steels X20Cr13 and X17CrNi16-2 under combined wear conditions at a load of 100 to 300 N and a rotation speed of 382 to 754 min-1. The wear test was carried out on a tribometer with the use of an aggressive medium in the chamber. After each wear cycle on the tribometer, the samples were exposed to corrosion action in a corrosion test bath. Analysis of variance revealed a significant influence of rotation speed and load due to wear on the tribometer. Testing the difference in the mass loss values of the samples due to corrosion using the Mann-Whitney U test did not show a significant effect of corrosion. Steel X20Cr13 showed greater resistance to combined wear, which had a 27% lower wear intensity compared to steel X17CrNi16-2. The increase in wear resistance of X20Cr13 steel can be attributed to the higher surface hardness achieved and the effective depth of hardening. The mentioned resistance is the result of the creation of a martensitic surface layer with dispersed carbides, which increases the resistance to abrasion, dynamic durability, and fatigue of the surface of the protective layer.

16.
Materials (Basel) ; 16(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902942

RESUMEN

It is crucial for clinical needs to develop novel titanium alloys feasible for long-term use as orthopedic and dental prostheses to prevent adverse implications and further expensive procedures. The primary purpose of this research was to investigate the corrosion and tribocorrosion behavior in the phosphate buffered saline (PBS) of two recently developed titanium alloys, Ti-15Zr and Ti-15Zr-5Mo (wt.%) and compare them with the commercially pure titanium grade 4 (CP-Ti G4). Density, XRF, XRD, OM, SEM, and Vickers microhardness analyses were conducted to give details about the phase composition and the mechanical properties. Additionally, electrochemical impedance spectroscopy was used to supplement the corrosion studies, while confocal microscopy and SEM imaging of the wear track were used to evaluate the tribocorrosion mechanisms. As a result, the Ti-15Zr (α + α' phase) and Ti-15Zr-5Mo (α″ + ß phase) samples exhibited advantageous properties compared to CP-Ti G4 in the electrochemical and tribocorrosion tests. Moreover, a better recovery capacity of the passive oxide layer was observed in the studied alloys. These results open new horizons for biomedical applications of Ti-Zr-Mo alloys, such as dental and orthopedical prostheses.

17.
Materials (Basel) ; 16(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36903213

RESUMEN

The use of additively manufactured components specifically utilizing titanium alloys has seen rapid growth particularly in aerospace applications; however, the propensity for retained porosity, high(er) roughness finish, and detrimental tensile surface residual stresses are still a limiting factor curbing its expansion to other sectors such as maritime. The main aim of this investigation is to determine the effect of a duplex treatment, consisting of shot peening (SP) and a coating deposited by physical vapor deposition (PVD), to mitigate these issues and improve the surface characteristics of this material. In this study, the additive manufactured Ti-6Al-4V material was observed to have a tensile and yield strength comparable to its wrought counterpart. It also exhibited good impact performance undergoing mixed mode fracture. It was also observed that the SP and duplex treatments resulted in a 13% and 210% increase in hardness, respectively. Whilst the untreated and SP treated samples exhibited a similar tribocorrosion behavior, the duplex-treated sample exhibited the greatest resistance to corrosion-wear observed by the lack of damage on the surface and the diminished material loss rates. On the other hand, the surface treatments did not improve the corrosion performance of the Ti-6Al-4V substrate.

18.
Med Biol Eng Comput ; 61(6): 1239-1255, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36701013

RESUMEN

The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence (AI) and machine learning (ML) models to medical diagnosis and clinical decision-making. However, implant monitoring after primary surgery often happens with a wellness visit or when a patient complains about it. Neglecting implant design and other technical errors in this scenario, unmonitored circumstances, and lack of post-surgery monitoring may ultimately lead to the implant system's failure and leave us with the only option of high-risk revision surgery. Preventive maintenance seems to be a good choice to identify the onset of an irreversible prosthesis failure. Considering all these aspects for hip implant monitoring, this paper explores existing studies linking ML models and intelligent systems for hip implant diagnosis. This paper explores the feasibility of an alternative continuous monitoring technique for post-surgery implant monitoring backed by an in vitro ML case study. Tribocorrosion and acoustic emission (AE) data are considered based on their efficacy in determining irreversible alteration of implant material to prevent total failures. This study also facilitates the relevance of developing an artificially intelligent implant monitoring methodology that can function with daily patient activities and how it can influence the digital orthopedic diagnosis. AI-based non-invasive hip implant monitoring system enabling point-of-care testing.


Asunto(s)
Inteligencia Artificial , Prótesis de Cadera , Humanos , Aprendizaje Automático , Falla de Prótesis
19.
J Shoulder Elbow Surg ; 32(1): 201-212, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36202200

RESUMEN

BACKGROUND: Morse taper junction tribocorrosion is recognized as an important failure mode in total hip arthroplasty. Although taper junctions are used in almost all shoulder arthroplasty systems currently available in the United States, with large variation in design, limited literature has described comparable analyses of taper damage in these implants. In this study, taper junction damage in retrieved reverse total shoulder arthroplasty (RTSA) implants was assessed and analyzed. METHODS: Fifty-seven retrieved RTSAs with paired baseplate and glenosphere components with Morse taper junctions were identified via database query; 19 of these also included paired humeral stems and trays or spacers with taper junctions. Components were graded for standard damage modes and for fretting and corrosion with a modified Goldberg-Cusick classification system. Medical records and preoperative radiographs were reviewed. Comparative analyses were performed assessing the impact of various implant, radiographic, and patient factors on taper damage. RESULTS: Standard damage modes were commonly found at the evaluated trunnion junctions, with scratching and edge deformation damage on 76% and 46% of all components, respectively. Fretting and corrosion damage was also common, observed on 86% and 72% of baseplates, respectively, and 23% and 40% of glenospheres, respectively. Baseplates showed greater moderate to severe (grade ≥ 3) fretting (43%) and corrosion (27%) damage than matched glenospheres (fretting, 9%; corrosion, 13%). Humeral stems showed moderate to severe fretting and corrosion on 28% and 30% of implants, respectively; matched humeral trays or spacers showed both less fretting (14%) and less corrosion (17%). On subgroup analysis, large-tapered implants had significantly lower summed fretting and corrosion grades than small-tapered implants (P < .001 for both) on glenospheres; paired baseplate corrosion grades were also significantly lower (P = .031) on large-tapered implants. Factorial analysis showed that bolt reinforcement of the taper junction was also associated with less fretting and corrosion damage on both baseplates and glenospheres. Summed fretting and corrosion grades on glenospheres with trunnions (male) were significantly greater than on glenospheres with bores (female) (P < .001 for both). CONCLUSIONS: Damage to the taper junction is commonly found in retrieved RTSAs and can occur after only months of being implanted. In this study, tribocorrosion predominantly occurred on the taper surface of the baseplate (vs. glenosphere) and on the humeral stem (vs. tray or spacer), which may relate to the flexural rigidity difference between the titanium and cobalt-chrome components. Bolt reinforcement and the use of large-diameter trunnions led to less tribocorrosion of the taper junction. The findings of this study provide evidence for the improved design of RTSA prostheses to decrease tribocorrosion.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastía de Reemplazo de Hombro , Prótesis de Cadera , Masculino , Femenino , Humanos , Falla de Prótesis , Diseño de Prótesis , Artroplastia de Reemplazo de Cadera/efectos adversos , Corrosión
20.
Materials (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203919

RESUMEN

Titanium alloy has the advantages of high specific strength, good corrosion resistance, and biocompatibility and is widely used in marine equipment, biomedicine, aerospace, and other fields. However, the application of titanium alloy in special working conditions shows some shortcomings, such as low hardness and poor wear resistance, which seriously affect the long life and safe and reliable service of the structural parts. Tribocorrosion has been one of the research hotspots in the field of tribology in recent years, and it is one of the essential factors affecting the application of passivated metal in corrosive environments. In this work, the characteristics of the marine and human environments and their critical tribological problems are analyzed, and the research connotation of tribocorrosion of titanium alloy is expounded. The research status of surface protection technology for titanium alloy in marine and biological environments is reviewed, and the development direction and trends in surface engineering of titanium alloy are prospected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA