Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Glob Chang Biol ; 30(9): e17493, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239723

RESUMEN

The future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short-lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old-growth tropical forests over a 4-5-year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small-scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.


Asunto(s)
Cambio Climático , Bosques , Árboles , Árboles/crecimiento & desarrollo , Borneo , Clima Tropical , Brasil
2.
Environ Monit Assess ; 196(2): 203, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277071

RESUMEN

The alarming increase in extreme weather events, such as severe storms with torrential rain and strong winds, is a direct result of climate change. These events have led to discernible shifts in forest structure and the carbon cycle, primarily driven by a surge in tree mortality. However, the impacts caused by these severe storms on the production and carbon increment from coarse woody debris (CWD) are still poorly understood, especially in the Brazilian Atlantic Forest. Thus, the goal proposed by the study was to quantify the CWD volume, necromass, and carbon stock before and after the occurrence of a severe storm and to determine the importance of spatial, structural, and qualitative variables of trees in the CWD carbon increment. The increase in carbon by the storm was 2.01 MgC ha-1, with a higher concentration in the CWD less decomposed and smaller diameter class. The forest fragment plots showed distinct increments (0.05-0.35 MgC), being influenced by spatial (elevation, declivity, and slope angle) structural (basal area) and qualitative factors (trunk quality and tree health), intrinsic to the forest. Thus, it is concluded that severe storms cause a large increase in carbon in CWD, making it essential to understand the susceptibility of forests to the action of intense rains and strong winds to model and monitor the future impacts of these extreme weather events on Atlantic Forest and other tropical forests in the world.


Asunto(s)
Carbono , Monitoreo del Ambiente , Brasil , Bosques , Madera , Árboles , Clima Tropical , Biomasa
3.
Glob Chang Biol ; 28(8): 2622-2638, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35007364

RESUMEN

Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.


Asunto(s)
Sequías , Xilema , Bosques , Filogenia , Hojas de la Planta/fisiología , Clima Tropical , Madera
4.
Mar Environ Res ; 172: 105506, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678680

RESUMEN

Plant invasion can primarily affect the structure and functioning of terrestrial and aquatic ecosystems. Although there is evidence that plant invasion can modify organic matter dynamics in mangroves, it is uncertain whether and to which extent these changes can affect carbon (C) and nitrogen (N) dynamics in the sediment-plant system. Here, we measured: (i) the structure of native vegetation and C and N in the sediment-plant system in subtropical mangroves subjected to aquatic macrophytes invasion in southeastern Brazil. We answered the following questions: i) Do invaded mangroves differ in aboveground biomass compared to non-invaded mangroves?; ii) Are there C4 macrophytes in these sites? iii) What are the C and N stocks in sediment of invaded mangroves? We quantified C and N concentrations and the isotopic signature of such elements (δ13C and δ15N) in the sediment-plant system, the C and N stocks in the sediment (0-20 cm depth), and mangrove aboveground biomass. Mangrove aboveground biomass was lower at invaded compared to non-invaded sites reflecting the species displacement in invaded sites. The sediment at invaded mangroves did not significantly contribute to C4 sources because of the large predominance of both mangrove and invasive C3 plants. While sediment C stocks were similar among study sites (∼47 Mg ha-1), N stocks were lower at invaded (2.7 Mg ha-1) comparing to non-invaded (3.2 Mg ha-1) mangroves. The lower N stocks at invaded sites can reflect the higher leaf N concentrations and lower C:N ratios of invasive plants compared to mangroves. Thus, the effects of macrophytes invasion in subtropical mangroves are more apparent for vegetation structure and N stocks. C stocks alteration is expected the be detectable in the future.


Asunto(s)
Ecosistema , Nitrógeno , Carbono , Suelo , Humedales
5.
J Environ Manage ; 281: 111898, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33434760

RESUMEN

Competition for resources can affect growth and increase mortality in forest stands. The effects of this process are little known, especially in areas subjected to forest management which show distinct growth dynamics when compared to unmanaged natural areas. This study aimed to estimate, evaluate and select the best fit competition indices (CI) for individual trees in a managed forest in the eastern Amazon. The data used originated from 18 permanent plots of 1 ha each, which were monitored for 12 years after Reduced Impact Logging (RIL). For the competition analysis, 23 indices were tested. CIs were evaluated based on graphical analyses and linear correlation coefficients(r)between each index and variables, basal area growth(ΔG), probability of mortality(Pm), and post-logging period (PLP). In addition, the partial F-test was applied to verify how well the calculated CIs explain the variations observed in ΔGandP(m). The distance-independent index for BAL (Basal Area Larger) performed the best. For the distance-dependent and semi-independent indices, the best interactions with the variables tested occurred in radii of 15 and 20 m away from the object tree. The largest trees presented higher values ofΔG. While P(m)was similar among the three tree classes, larger trees had a slightly higher P(m)due to thier low density of individuals. The results obtained in this study may help to include CIs in growth and production models at the individual tree level in tropical rainforests, especially in those managed in the Brazilian Amazon.


Asunto(s)
Bosques , Brasil , Humanos
6.
Biol Lett ; 16(8): 20200263, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32750268

RESUMEN

Bark water vapour conductance (gbark) is a rarely considered functional trait. However, for the few tree species measured to date, it appears high enough to create stem water deficits associated with mortality during droughts, when access to water is limited. I tested whether gbark correlates with stem water deficit during drought conditions in two datasets of tropical trees: one of saplings in forest understories during an annual dry season and one of potted saplings in a shadehouse during extreme drought conditions. Among all 14 populations of eight species measured, gbark varied more than 10-fold (0.86-12.98 mmol m-2 s-1). In the forest understories, gbark was highly correlated with stem water deficit among four deciduous species, but not among evergreen species that likely maintained access to soil water. In the shadehouse, gbark was positively correlated with stem water deficit and mortality among all six species. Overall, tree species with higher gbark suffer higher stem water deficit when soil water is unavailable. Incorporating gbark into soil-plant-atmosphere hydrodynamic models may improve projections of plant mortality under drought conditions.


Asunto(s)
Sequías , Árboles , Bosques , Corteza de la Planta , Hojas de la Planta , Vapor , Clima Tropical , Agua
7.
Glob Chang Biol ; 26(5): 3122-3133, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32053250

RESUMEN

Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Costa Rica , Bosques , Hojas de la Planta , Clima Tropical
8.
Glob Chang Biol ; 25(11): 3817-3828, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31344294

RESUMEN

Extreme climatic and weather events are increasing in frequency and intensity across the world causing episodes of widespread tree mortality in many forested ecosystems. However, we have a limited understanding about which local factors influence tree mortality patterns, restricting our ability to predict tree mortality, especially within topographically complex tropical landscapes with a matrix of mature and secondary forests. We investigated the effects of two major local factors, topography and forest successional type, on climate-induced tropical tree mortality patterns using an observational and modeling approach. The northernmost Neotropical dry forest endured an unprecedented episode of frost-induced tree mortality after the historic February 2011 cold wave hit northwestern Mexico. In a moderately hilly landscape covering mature and secondary tropical dry forests, we surveyed 454 sites for the presence or absence of frost-induced tree mortality. In addition, across forty-eight 1 ha plots equally split into the two forest types, we examined 6,981 woody plants to estimate a frost-disturbance severity metric using the density of frost-killed trees. Elevation is the main factor modulating frost effects regardless of forest type. Higher occurrence probabilities of frost-induced tree mortality at lowland forests can be explained by the strong influence of elevation on temperature distribution since heavier cold air masses move downhill during advective frosts. Holding elevation constant, the probability of frost-induced tree mortality in mature forests was twice that of secondary forests but severity showed the opposite pattern, suggesting a cautious use of occurrence probabilities of tree mortality to infer severity of climate-driven disturbances. Extreme frost events, in addition to altering forest successional pathways and ecosystem services, likely maintain and could ultimately shift latitudinal and altitudinal range margins of Neotropical dry forests.


Asunto(s)
Ecosistema , Clima Tropical , Bosques , México , Madera
9.
Sci Total Environ ; 659: 587-598, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096388

RESUMEN

Large dams built for hydroelectric power generation alter the hydrology of rivers, attenuating the flood pulse downstream of the dam and impacting riparian and floodplain ecosystems. The present work mapped black-water floodplain forests (igapó) downstream of the Balbina Reservoir, which was created between 1983 and 1987 by damming the Uatumã River in the Central Amazon basin. We apply remote sensing methods to detect tree mortality resulting from hydrological changes, based on analysis of 56 ALOS/PALSAR synthetic aperture radar images acquired at different flood levels between 2006 and 2011. Our application of object-based image analysis (OBIA) methods and the random forests supervised classification algorithm yielded an overall accuracy of 87.2%. A total of 9800 km2 of igapó forests were mapped along the entire river downstream of the dam, but forest mortality was only observed below the first 49 km downstream, after the Morena rapids, along an 80-km river stretch. In total, 12% of the floodplain forest died within this stretch. We also detected that 29% of the remaining living igapó forest may be presently undergoing mortality. Furthermore, this large loss does not include the entirety of lost igapó forests downstream of the dam; areas which are now above current maximum flooding heights are no longer floodable and do not show on our mapping but will likely transition over time to upland forest species composition and dynamics, also characteristic of igapó loss. Our results show that floodplain forests are extremely sensitive to long-term downstream hydrological changes and disturbances resulting from the disruption of the natural flood pulse. Brazilian hydropower regulations should require that Amazon dam operations ensure the simulation of the natural flood-pulse, despite losses in energy production, to preserve the integrity of floodplain forest ecosystems and to mitigate impacts for the riverine populations.


Asunto(s)
Hidrología , Centrales Eléctricas , Ríos , Árboles , Brasil , Conservación de los Recursos Naturales
10.
Artículo en Inglés | MEDLINE | ID: mdl-30297480

RESUMEN

Large trees in the tropics are reportedly more vulnerable to droughts than their smaller neighbours. This pattern is of interest due to what it portends for forest structure, timber production, carbon sequestration and multiple other values given that intensified El Niño Southern Oscillation (ENSO) events are expected to increase the frequency and intensity of droughts in the Amazon region. What remains unclear is what characteristics of large trees render them especially vulnerable to drought-induced mortality and how this vulnerability changes with forest degradation. Using a large-scale, long-term silvicultural experiment in a transitional Amazonian forest in Bolivia, we disentangle the effects of stem diameter, tree height, crown exposure and logging-induced degradation on risks of drought-induced mortality during the 2004/2005 ENSO event. Overall, tree mortality increased in response to drought in both logged and unlogged plots. Tree height was a much stronger predictor of mortality than stem diameter. In unlogged plots, tree height but not crown exposure was positively associated with drought-induced mortality, whereas in logged plots, neither tree height nor crown exposure was associated with drought-induced mortality. Our results suggest that, at the scale of a site, hydraulic factors related to tree height, not air humidity, are a cause of elevated drought-induced mortality of large trees in unlogged plots.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Agricultura Forestal , Bosques , Árboles/fisiología , Bolivia , Longevidad , Árboles/crecimiento & desarrollo
11.
Glob Chang Biol ; 24(12): 5867-5881, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30256494

RESUMEN

Amazon forests account for ~25% of global land biomass and tropical tree species. In these forests, windthrows (i.e., snapped and uprooted trees) are a major natural disturbance, but the rates and mechanisms of recovery are not known. To provide a predictive framework for understanding the effects of windthrows on forest structure and functional composition (DBH ≥10 cm), we quantified biomass recovery as a function of windthrow severity (i.e., fraction of windthrow tree mortality on Landsat pixels, ranging from 0%-70%) and time since disturbance for terra-firme forests in the Central Amazon. Forest monitoring allowed insights into the processes and mechanisms driving the net biomass change (i.e., increment minus loss) and shifts in functional composition. Windthrown areas recovering for between 4-27 years had biomass stocks as low as 65.2-91.7 Mg/ha or 23%-38% of those in nearby undisturbed forests (~255.6 Mg/ha, all sites). Even low windthrow severities (4%-20% tree mortality) caused decadal changes in biomass stocks and structure. While rates of biomass increment in recovering vegetation were nearly double (6.3 ± 1.4 Mg ha-1  year-1 ) those of undisturbed forests (~3.7 Mg ha-1  year-1 ), biomass loss due to post-windthrow mortality was high (up to -7.5 ± 8.7 Mg ha-1  year-1 , 8.5 years since disturbance) and unpredictable. Consequently, recovery to 90% of "pre-disturbance" biomass takes up to 40 years. Resprouting trees contributed little to biomass recovery. Instead, light-demanding, low-density genera (e.g., Cecropia, Inga, Miconia, Pourouma, Tachigali, and Tapirira) were favored, resulting in substantial post-windthrow species turnover. Shifts in functional composition demonstrate that windthrows affect the resilience of live tree biomass by favoring soft-wooded species with shorter life spans that are more vulnerable to future disturbances. As the time required for forests to recover biomass is likely similar to the recurrence interval of windthrows triggering succession, windthrows have the potential to control landscape biomass/carbon dynamics and functional composition in Amazon forests.


Asunto(s)
Biomasa , Bosques , Árboles , Viento , Brasil , Carbono , Clima Tropical
12.
Plant Cell Environ ; 41(3): 548-562, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29211923

RESUMEN

Faster growth in tropical trees is usually associated with higher mortality rates, but the mechanisms underlying this relationship are poorly understood. In this study, we investigate how tree growth patterns are linked with environmental conditions and hydraulic traits, by monitoring the cambial growth of 9 tropical cloud forest tree species coupled with numerical simulations using an optimization model. We find that fast-growing trees have lower xylem safety margins than slow-growing trees and this pattern is not necessarily linked to differences in stomatal behaviour or environmental conditions when growth occurs. Instead, fast-growing trees have xylem vessels that are more vulnerable to cavitation and lower density wood. We propose the growth - xylem vulnerability trade-off represents a wood hydraulic economics spectrum similar to the classic leaf economic spectrum, and show through numerical simulations that this trade-off can emerge from the coordination between growth rates, wood density, and xylem vulnerability to cavitation. Our results suggest that vulnerability to hydraulic failure might be related with the growth-mortality trade-off in tropical trees, determining important life history differences. These findings are important in furthering our understanding of xylem hydraulic functioning and its implications on plant carbon economy.


Asunto(s)
Árboles/crecimiento & desarrollo , Xilema/fisiología , Brasil , Modelos Biológicos , Estomas de Plantas/fisiología , Árboles/fisiología , Clima Tropical , Madera/anatomía & histología , Madera/química
13.
New Phytol ; 219(3): 947-958, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28585237

RESUMEN

Drought disproportionately affects larger trees in tropical forests, but implications for forest composition and carbon (C) cycling in relation to dry season intensity remain poorly understood. In order to characterize how C cycling is shaped by tree size and drought adaptations and how these patterns relate to spatial and temporal variation in water deficit, we analyze data from three forest dynamics plots spanning a moisture gradient in Panama that have experienced El Niño droughts. At all sites, aboveground C cycle contributions peaked below 50-cm stem diameter, with stems ≥ 50 cm accounting for on average 59% of live aboveground biomass, 45% of woody productivity and 49% of woody mortality. The dominance of drought-avoidance strategies increased interactively with stem diameter and dry season intensity. Although size-related C cycle contributions did not vary systematically across the moisture gradient under nondrought conditions, woody mortality of larger trees was disproportionately elevated under El Niño drought stress. Thus, large (> 50 cm) stems, which strongly mediate but do not necessarily dominate C cycling, have drought adaptations that compensate for their more challenging hydraulic environment, particularly in drier climates. However, these adaptations do not fully buffer the effects of severe drought, and increased large tree mortality dominates ecosystem-level drought responses.


Asunto(s)
Ciclo del Carbono , Bosques , Árboles/anatomía & histología , Árboles/fisiología , Clima Tropical , Adaptación Fisiológica , Biomasa , Deshidratación , Sequías , El Niño Oscilación del Sur , Panamá , Tallos de la Planta/fisiología
14.
Glob Chang Biol ; 24(1): 249-258, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28752626

RESUMEN

Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.


Asunto(s)
Sequías , Bosque Lluvioso , Árboles/fisiología , Cambio Climático , Suelo , Clima Tropical , Agua , Ciclo Hidrológico
15.
Ecol Appl ; 26(7): 2225-2237, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755720

RESUMEN

Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality.


Asunto(s)
Bosques , Árboles , Viento , Monitoreo del Ambiente , Modelos Biológicos , Perú
16.
Glob Chang Biol ; 22(7): 2516-25, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26750627

RESUMEN

Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.


Asunto(s)
Ciclo del Carbono , Incendios , Bosques , Carbono/análisis , Suelo/química , América del Sur , Árboles/crecimiento & desarrollo , Clima Tropical
17.
Rev. biol. trop ; Rev. biol. trop;58(4): 1283-1297, dic. 2010. ilus, graf, mapas, tab
Artículo en Inglés | LILACS | ID: lil-638001

RESUMEN

One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees ≥3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane) and the canopy thinning phase (marked by increased competition and mortality). Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005) and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration. Rev. Biol. Trop. 58 (4): 1283-1297. Epub 2010 December 01.


Estudiamos el efecto de los fenómenos naturales sobre la dinámica de bosques húmedos tropicales del este de Nicaragua después del paso del huracán Juana en 1988. Evaluamos las tasas de crecimiento y mortalidad de las 26 especies más comunes en ese bosque posterior al huracán. El estudio se llevó a cabo en dos localidades del área afectada por el huracán. Establecimos parcelas permanentes en dos sitios afectados por el huracán, en las cuales medimos variables demográficas poblacionales a todos los individuos con un diámetro a la altura del pecho ≥3.18cm. El estudio se realizó durante dos fases, la fase de construcción de dosel (caracterizada por el aumento en el número de individuos de las especies que resistieron el huracán) la fase de raleo del dosel (caracterizado por el aumento de la competencia y mortalidad). El análisis de la mortalidad en la etapa de raleo del dosel trata de probar la hipótesis que la mortalidad de los árboles no esta ligada a la identidad de especies de árboles y que la sobrevivencia se encuentra directamente relacionada con el crecimiento de los árboles. Asimismo, estos resultados confirman la hipótesis de independencia con respecto a posibles nichos ecológicos.


Asunto(s)
Biodiversidad , Tormentas Ciclónicas/estadística & datos numéricos , Regeneración , Árboles/fisiología , Ecosistema , Ambiente , Nicaragua , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA