Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Xenotransplantation ; 29(5): e12776, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36125166

RESUMEN

We have been testing genetically engineered (GE) pig hearts and optimizing immunosuppression (IS) in non-human primates (NHPs) since 2005. We demonstrate how we translated this preclinical investigation into a US Food and Drug Administration (FDA)-approved clinical cardiac xenotransplantation. First, genetically engineered (GE) pig hearts were transplanted into the abdomen of NHP along with IS, which included anti-CD20 and anti-CD40-based co-stimulation blockade antibodies. We reported 945 days of survival of three gene GE pig hearts in NHPs. Building on this proof-of-concept, we tested 3-10 gene-modified GE pig hearts (in order to improve the immunocompatibility of the xenograft further) in a life-supporting orthotopic model, but had limited success due to perioperative cardiac xenograft dysfunction (PCXD). With novel non-ischemic continuous perfusion preservation (NICP), using the XVIVO Heart solution (XHS), life-supporting survival was extended to 9 months. We approached the FDA under an application for "Expanded Access" (EA), to transplant a GE pig heart in a patient with end-stage non-ischemic cardiomyopathy. He was without other therapeutic options and dependent on VA-ECMO. A team of FDA reviewers reviewed our preclinical research experience and data and allowed us to proceed. This clinical cardiac xenotransplantation was performed, and the patient survived for 60 days, demonstrating the translational preclinical investigation of cardiac xenotransplantation from bench to bedside. The ultimate etiology of graft failure is currently a topic of investigation and lessons learned will progress the field forward.


Asunto(s)
Supervivencia de Injerto , Trasplante de Corazón , Animales , Animales Modificados Genéticamente , Rechazo de Injerto , Humanos , Masculino , Papio , Primates , Porcinos , Trasplante Heterólogo , Estados Unidos , United States Food and Drug Administration
2.
BMC Cancer ; 22(1): 408, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421957

RESUMEN

BACKGROUND: Although uveal melanoma (UM) at the early stage is controllable to some extent, it inevitably ultimately leads to death due to its metastasis. At present, the difficulty is that there is no way to effectively tackle the metastasis. It is hypothesized that these will be treated by target molecules, but the recognized target molecule has not yet been found. In this study, the target molecule was explored through proteomics. METHODS: Transgenic enhanced green fluorescent protein (EGFP) inbred nude mice, which spontaneously display a tumor microenvironment (TME), were used as model animal carriers. The UM cell line 92.1 was inoculated into the brain ventricle stimulating metastatic growth of UM, and a graft re-cultured Next, the UM cell line 92.1-A was obtained through monoclonal amplification, and a differential proteomics database, between 92.1 and ectopic 92.1-A, was established. Finally, bioinformatics methodologies were adopted to optimize key regulatory proteins, and in vivo and in vitro functional verification and targeted drug screening were performed. RESULTS: Cells and tissues displaying green fluorescence in animal models were determined as TME characteristics provided by hosts. The data of various biological phenotypes detected proved that 92.1-A were more malignant than 92.1. Besides this malignancy, the key protein p62 (SQSTM1), selected from 5267 quantifiable differential proteomics databases, was a multifunctional autophagy linker protein, and its expression could be suppressed by chloroquine and dacarbazine. Inhibition of p62 could reduce the malignancy degree of 92.1-A. CONCLUSIONS: As the carriers of human UM orthotopic and ectopic xenotransplantation, transgenic EGFP inbred nude mice clearly display the characteristics of TME. In addition, the p62 protein optimized by the proteomics is the key protein that increases the malignancy of 92.1 cells, which therefore provides a basis for further exploration of target molecule therapy for refractory metastatic UM.


Asunto(s)
Dacarbazina , Neoplasias de la Úvea , Animales , Línea Celular Tumoral , Cloroquina/uso terapéutico , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Humanos , Melanoma , Ratones , Ratones Desnudos , Proteómica , Microambiente Tumoral , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
3.
Transpl Int ; 34(12): 2547-2561, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687578

RESUMEN

Immunological behavior of graft-infiltrating lymphocytes (GILs) determines the graft fate (i.e., rejection or acceptance). Nevertheless, the functional alloreactivity and the phenotype of GILs at various times during the early post-transplantation phase have not been fully elucidated. We examined the immunological activities of early-phase GILs using a murine model of cardiac transplantation. GILs from 120-h allografts, but not 72-h allografts, showed robust activation and produced proinflammatory cytokines. In particular, a significant increase in CD69+ T-bet+ Nur77+ T cells was detected in 120-h allografts. Furthermore, isolated GILs were used to reconstitute BALB/c Rag2-/- γc-/- (BRG) mice. BRG mice reconstituted with 120-h GILs displayed donor-specific immune reactivity and rejected donor strain cardiac allografts; conversely, 72-h GILs exhibited weak anti-donor reactivity and did not reject allografts. These findings were confirmed by re-transplantation of cardiac allografts into BRG mice at 72-h post-transplantation. Re-transplanted allografts continued to function for >100 days, despite the presence of CD3+ GILs. In conclusion, the immunological behavior of GILs considerably differs over time during the early post-transplantation phase. A better understanding of the functional role of early-phase GILs may clarify the fate determination process in the graft-site microenvironment.


Asunto(s)
Trasplante de Corazón , Animales , Modelos Animales de Enfermedad , Rechazo de Injerto , Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante Homólogo
4.
Methods Mol Biol ; 2294: 239-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742406

RESUMEN

DNA barcoding allows the quantitative, biomarker-free tracking of individual cell populations in mixed/heterogeneous cell pools. Here, we describe a multiplexed in vivo screening platform based on DNA barcoding technology to interrogate compound libraries for their effect on metastatic seeding in vivo. We apply next-generation sequencing (NGS) technology to quantitatively analyze high-throughput compound screening in mice. Up to 96 compounds and controls can be screened for their effect on metastatic ability in a single mouse.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Neoplasias/genética , RNA-Seq/métodos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA