Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Clin Transl Oncol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264531

RESUMEN

BACKGROUND: Globally, breast cancer is the most common type of malignant tumor. It has been demonstrated that TMEM41A is abnormally expressed in a number of cancers and is linked to a dismal prognosis. TMEM41A's involvement in breast cancer remains unknown, though. METHODS: Data from databases such as TCGA were used in this study. Expression differences were compared using non-parametric tests. Cox regression analysis was employed, and analyses such as Nomogram were used to assess the significance of TMEM41A in predicting the prognosis of breast cancer. Lastly, it was looked into how immune cell infiltration in breast cancer is related to TMEM41A expression levels. RESULTS: The results suggest that TMEM41A is overexpressed in breast cancer and correlates with poor prognosis (P = 0.01), particularly in early-stage and ductal A breast cancer (P < 0.01). Breast cancer patients' expression of TMEM41A was found to be an independent risk factor (HR = 1.132, 95% CI 1.036-1.237) by multifactorial Cox regression analysis. The Nomogram prediction model's c-index was 0.736 (95% CI 0.684-0.787). The results of GSEA biofunctional enrichment analysis included the B cell receptor signaling pathway (P < 0.05). Ultimately, there was a significant correlation (P < 0.05) between TMEM41A expression in breast cancer and an infiltration of twenty immune cells. CONCLUSIONS: Breast cancer tissues overexpress TMEM41A, which is linked to immune cell infiltration and prognosis (particularly in early stage and luminal A breast cancer). Overexpression of TMEM41A is anticipated to serve as a novel prognostic indicator and therapeutic target for breast cancer.

2.
bioRxiv ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39282397

RESUMEN

Protein S-palmitoylation is a reversible lipophilic posttranslational modification regulating a diverse number of signaling pathways. Within transmembrane proteins (TMPs), S-palmitoylation is implicated in conditions from inflammatory disorders to respiratory viral infections. Many small-scale experiments have observed S-palmitoylation at juxtamembrane Cys residues. However, most large-scale S-palmitoyl discovery efforts rely on trypsin-based proteomics within which hydrophobic juxtamembrane regions are likely underrepresented. Machine learning- by virtue of its freedom from experimental constraints - is particularly well suited to address this discovery gap surrounding TMP S-palmitoylation. Utilizing a UniProt-derived feature set, a gradient boosted machine learning tool (TopoPalmTree) was constructed and applied to a holdout dataset of viral S-palmitoylated proteins. Upon application to the mouse TMP proteome, 1591 putative S-palmitoyl sites (i.e. not listed in SwissPalm or UniProt) were identified. Two lung-expressed S-palmitoyl candidates (synaptobrevin Vamp5 and water channel Aquaporin-5) were experimentally assessed. Finally, TopoPalmTree was used for rational design of an S-palmitoyl site on KDEL-Receptor 2. This readily interpretable model aligns the innumerable small-scale experiments observing juxtamembrane S-palmitoylation into a proteomic tool for TMP S-palmitoyl discovery and design, thus facilitating future investigations of this important modification.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39231809

RESUMEN

Fungal biosynthetic gene clusters often include genes encoding transmembrane proteins, which have been mostly thought to be transporters exporting the products. However, there is little knowledge about subcellular compartmentalization of transmembrane proteins essential for biosynthesis. Fungal mycotoxin cyclochlorotine is synthesized by non-ribosomal peptide synthetase, which is followed by modifications with three transmembrane UstYa-family proteins. Heterologous expression in Aspergillus oryzae revealed that total biosynthesis of cyclochlorotine requires additional two transporter proteins. Here, we investigated subcellular localizations of the five transmembrane proteins under heterologous expression in A. oryzae. Enhanced green fluorescent protein (EGFP) fusions to the transmembrane proteins, which were confirmed to normally function in cyclochlorotine production, were expressed together with organellar markers. All the transmembrane proteins exhibited localizations commonly in line of the trans-Golgi, endosomes, and vacuoles. This study suggests that subcellular compartmentalization of UstYa family proteins and transporters allows corporative functions of delivering intermediates and subsequent modifications, completing cyclochlorotine biosynthesis.

4.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273214

RESUMEN

Neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, is caused by mutations in the NF1 gene, which encodes the GTPase-activating protein neurofibromin. The pathogenesis of the tumor progression of benign plexiform neurofibromas (PNs) and malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. Here, we found that interferon-induced transmembrane protein 1 (IFITM1) was downregulated in MPNST tissues compared to those in PN tissues from patients with NF1. Overexpression of IFITM1 in NF1-associated MPNST cells resulted in a significant decrease in Ras activation (GTP-Ras) and downstream extracellular regulatory kinase 1/2 (ERK1/2) phosphorylation, whereas downregulation of IFITM1 via treatment with small interfering RNA in normal Schwann cells had the opposite result, indicating that expression levels of IFITM1 are closely associated with tumor progression in NF1. Treatment of MPNST cells with interferon-gamma (IFN-γ) significantly augmented the expression of IFITM1, thereby leading to a decrease in Ras and ERK1/2 activation. Despite the small number of patient samples, these findings may potentially provide a new target for chemotherapy in patients with NF1-associated MPNSTs. In xenograft mice injected with MPNST cells, IFN-γ treatment successfully suppressed tumor progression with increased IFITM1 expression and decreased Ras and ERK1/2 activation in tumor tissues. Collectively, these results suggest that IFITM1 is closely involved in MPNST pathogenesis and that IFN-γ is a good candidate for the therapeutic treatment of MPNSTs in NF1.


Asunto(s)
Antígenos de Diferenciación , Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Humanos , Animales , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromatosis 1/complicaciones , Ratones , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/patología , Línea Celular Tumoral , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Interferón gamma/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas ras/metabolismo , Proteínas ras/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Adulto
5.
Clin Respir J ; 18(8): e70006, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39188060

RESUMEN

INTRODUCTION: Lung adenocarcinoma (LUAD) is one of the major histopathological types of non-small cell lung cancer (NSCLC), including solid, acinar, lepidic, papillary and micropapillary subtypes. Increasing evidence has shown that micropapillary LUAD is positively associated with a higher percentage of driver gene mutations, a higher incidence of metastasis and a poorer prognosis, while lepidic LUAD has a relatively better prognosis. However, the novel genetic change and its underlying mechanism in the progression of micropapillary LUAD have not been exactly determined. METHODS: A total of 181 patients with LUAD who underwent surgery at the First Affiliated Hospital of Huzhou University from January 2020 to December 2022 were enrolled. Three predominant lepidic and three predominant micropapillary LUAD tissue samples were carried out using whole-exome sequencing. Comprehensive analysis of genomic variations and the difference between lepidic and micropapillary LUAD was performed. In addition, the TMEM229A Q200del mutation was verified using our cohort and TCGA-LUAD datasets. The correlations between the TMEM229A Q200del mutation and the clinicopathological characteristics of patients with LUAD were further analyzed. The functions and mechanisms of TMEM229A Q200del on NSCLC cell proliferation and migration were also determined. RESULTS: The frequency of genomic changes in patients with micropapillary LUAD was higher than that in patients with lepidic LUAD. Mutations in EGFR, ATXN2, C14orf180, MUC12, NOTCH1, and PKD1L2 were concomitantly detected in three predominant micropapillary and three predominant lepidic LUAD cases. The TMEM229A Q200del mutation was only mutated in lepidic LUAD. Additionally, the TMEM229A Q200del mutation had occurred in 16 (8.8%) patients, and not found TMEM229A R76H and M346T mutations in our cohort, while TMEM229A mutations (R76H, M346T, and Q200del) occurred only in 1.0% of the TCGA-LUAD cohort. Further correlation analysis between the TMEM229A Q200del mutation and clinicopathological characteristics suggested that a lower frequency of the Q200del mutation was significantly associated with positive lymph node metastasis, advanced TNM stage, positive cancer thrombus, and pathological features. Finally, overexpression of TMEM229A Q200del suppressed NSCLC cell proliferation and migration in vitro. Mechanistically, overexpression of TMEM229A and TMEM229A Q200del both reduced the expression level of phosphorylated (p)-ERK and p-AKT (Ser473), and the reduced protein level of p-ERK in the TMEM229A Q200del group was more pronounced compared to the TMEM229A group. CONCLUSION: Our results demonstrated that the TMEM229A Q200del mutant may play a protective role in the progression of LUAD via inactivating ERK pathway, providing a potential therapeutic target in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Secuenciación del Exoma , Neoplasias Pulmonares , Proteínas de la Membrana , Mutación , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Femenino , Secuenciación del Exoma/métodos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Proliferación Celular/genética , Pronóstico , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/genética
6.
Mol Clin Oncol ; 21(4): 70, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39113849

RESUMEN

Currently, the role of cleft-lip and palate transmembrane protein-1-like (CLPTM1L) rs401681 in various tumor types, particularly lung cancer, has garnered significant attention. However, the findings across studies have shown discrepancies. The aim of the present meta-analysis was to provide a more nuanced understanding of the involvement of CLPTM1L rs401681 in lung cancer development. Several electronic databases were systematically searched, including PubMed, Cochrane Library, Embase, Medline, Wanfang, Google Scholar and Chinese National Knowledge Infrastructure. Odds ratios (ORs) and 95% confidence intervals (CIs) were synthesized using random-effects models. Heterogeneity of included studies was assessed using the I2 statistic and Q test. Sensitivity analysis was conducted to evaluate the stability of overall estimates. Moreover, Egger's test was utilized to detect potential publication bias. The collective ORs indicated a significant association between the CLPTM1L rs401681 polymorphism and susceptibility to lung cancer across various genetic comparisons. These encompass allele T vs. allele C (OR=0.93, 95% CI=0.88-0.99, P<0.001), TT + CT vs. CC (OR=0.91, 95% CI=0.87-0.96, P<0.001), TT vs. CC + CT (OR=0.88, 95% CI=0.80-0.96, P<0.001), TT vs. CC (OR=0.84, 95% CI=0.75-0.94, P<0.001) and CT vs. CC (OR=0.84, 95% CI=0.75-0.94, P<0.001). Examination through statistical Q test and I2 statistic revealed pronounced heterogeneity across four genetic comparisons (allele T vs. allele C, TT + CT vs. CC, TT vs. CC and CT vs. CC). Ethnical distinctions emerged as the primary, if not exclusive, sources of the significant heterogeneity. Upon stratification by ethnicity, a notable reduction in heterogeneity was discernible within the Caucasian demographic. However, heterogeneity persisted within the Asian population. Furthermore, lung cancer risks were statistically significantly decreased for individuals possessing allele T through all genetic comparisons within Caucasians; whereas among Asians, significant reduction was observed solely in the TT vs. CC comparison. The present meta-analysis uncovers a significant association between the CLPTM1L rs401681 polymorphism and altered susceptibility to lung cancer.

7.
Cancer Biomark ; 40(3-4): 227-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213053

RESUMEN

Epithelial membrane protein 3 (EMP3) belongs to the peripheral myelin protein 22 kDa (PMP22) gene family, characterized by four transmembrane domains and widespread expression across various human tissues and organs. Other members of the PMP22 family, including EMP1, EMP2, and PMP22, have been linked to various cancers, such as glioblastoma, laryngeal cancer, nasopharyngeal cancer, gastric cancer, breast cancer, and endometrial cancer. However, few studies report on the function and relevance of EMP3 in tumorigenicity. Given the significant structural similarities among members of the PMP22 family, there are likely potential functional similarities as well. Previous studies have established the regulatory role of EMP3 in immune cells like T cells and macrophages. Additionally, EMP3 is found to be involved in critical signaling pathways, including HER-2/PI3K/Akt, MAPK/ERK, and TGF-beta/Smad. Furthermore, EMP3 is associated with cell cycle regulation, cellular proliferation, and apoptosis. Hence, it is likely that EMP3 participates in cancer development through these aforementioned pathways and mechanisms. This review aims to systematically examine and summarize the structure and function of EMP3 and its association to various cancers. EMP3 is expected to emerge as a significant biological marker for tumor prognosis and a potential target in cancer therapeutics.


Asunto(s)
Biomarcadores de Tumor , Glicoproteínas de Membrana , Terapia Molecular Dirigida , Neoplasias , Humanos , Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Pronóstico , Terapia Molecular Dirigida/métodos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Transducción de Señal
8.
Cancer Genomics Proteomics ; 21(5): 511-522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39191497

RESUMEN

BACKGROUND/AIM: Interferon-induced trans-membrane protein 1 (IFITM1) is known to be involved in breast cancer progression. We aimed to investigate its role in estrogen receptor (ER)-positive breast cancer cells with wild-type p53 and tamoxifen-resistant breast cancer cells. MATERIALS AND METHODS: The ER-positive breast cancer cell lines, MCF-7 with wild-type p53 and T47D with mutant p53, were used. We established an MCF-7-derived tamoxifen-resistant cell line (TamR) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen. RESULTS: IFITM1 inhibition in MCF-7 cells significantly decreased cell growth and migration. MCF-7 cells with suppression of IFITM1 using siRNA or ruxolitinib showed reduced cell viability after tamoxifen treatment compared with that in the control MCF-7 cells. Unexpectedly, mRNA and protein levels of IFITM1 were decreased in TamR cells compared with those in MCF-7 cells. TamR cells with suppression of IFITM1 using siRNA or ruxolitinib showed no change in cell viability after treatment with tamoxifen. P53 knockdown using siRNA reduced the mRNA levels of IRF9 and increased mRNA and protein levels of SOCS3 in MCF-7 cells, suggesting that loss or mutation of p53 can affect the induction of IFITM1 via the JAK/STAT signaling pathway in breast cancer. Furthermore, MCF-7 cells with p53 knockdown using siRNA showed no decrease in cell viability after tamoxifen treatment or IFITM1 inhibition, indicating that p53 status may be important for cell death after tamoxifen treatment or IFITM1 inhibition. CONCLUSION: IFITM1 inhibition may enhance the sensitivity to tamoxifen based on p53-dependent enhancement of IFN signaling in wild-type p53, ER-positive breast cancer cells.


Asunto(s)
Antígenos de Diferenciación , Neoplasias de la Mama , Proliferación Celular , Receptores de Estrógenos , Tamoxifeno , Proteína p53 Supresora de Tumor , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Femenino , Proliferación Celular/efectos de los fármacos , Antígenos de Diferenciación/metabolismo , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Células MCF-7 , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
9.
Front Biosci (Landmark Ed) ; 29(8): 285, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39206901

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly aggressive and fast-growing brain tumor, characterized by rapid progression, a very poor prognosis, and a high likelihood of recurrence. Thus, effective new therapeutic targets are urgently needed. Transmembrane proteins (TMEMs) have pro-cancer effects on multiple cancer types, but the mechanisms underlying the effects of TMEM17, particularly its role in GBM, remain unclear. METHODS: We conducted bioinformatics analyses and immunohistochemistry to evaluate the role of TMEM17 in a variety of cancer types. Functional assays were conducted included the Cell Counting Kit-8 assay, annexin V-FITC/PI double staining, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, wound healing assay, transwell invasion assay, and dual luciferase assay. RESULTS: We found that TMEM17 is associated with a poor prognosis in GBM. Prognostic analyses confirmed that high TMEM17 expression predicted poorer survival, establishing its significance as an independent prognostic factor. Functional assays demonstrated that silencing TMEM17 in GBM cell lines inhibited proliferation and invasion, and induced apoptosis, underscoring its role in tumor aggressiveness. From a mechanistic perspective, we discovered that the Ying Yang 1 (YY1) transcription factor can bind to the promoter of TMEM17, regulating its upregulation. Regarding downstream mechanisms, knocking down TMEM17 inhibited the phosphoinositide 3-kinase/AKT pathway. These findings suggest that TMEM17 plays a significant role in GBM and may be a potential therapeutic target for this cancer. CONCLUSION: These data prove that TMEM17 plays a key role in the regulation of GBM and has great potential as a clinical therapeutic target for GBM.


Asunto(s)
Neoplasias Encefálicas , Progresión de la Enfermedad , Glioblastoma , Proteínas de la Membrana , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proliferación Celular/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Apoptosis/genética , Masculino , Femenino , Pronóstico , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad
10.
Methods Mol Biol ; 2839: 77-97, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008249

RESUMEN

Transmembrane transition metal transporter proteins are central gatekeepers in selectively controlling vectorial metal cargo uptake and extrusion across cellular membranes in all living organisms, thus playing key roles in essential and toxic metal homeostasis. Biochemical characterization of transporter-mediated translocation events and transport kinetics of redox-active metals, such as iron and copper, is challenged by the complexity in generating reconstituted systems in which vectorial metal transport can be studied in real time. We present fluorescence-based proteoliposome methods to monitor redox-active metal transmembrane translocation upon reconstitution of purified metal transporters in artificial lipid bilayers. By encapsulating turn-on/-off iron or copper-dependent sensors in the proteoliposome lumen and conducting real-time transport assays using small unilamellar vesicles (SUVs), in which selected purified Fe(II) and Cu(I) transmembrane importer and exporter proteins have been reconstituted, we provide a platform to monitor metal translocation events across lipid bilayers in real time. The strategy is modular and expandable toward the study of different transporter families featuring diverse metal substrate selectivity and promiscuity.


Asunto(s)
Membrana Dobles de Lípidos , Oxidación-Reducción , Proteolípidos , Proteolípidos/metabolismo , Proteolípidos/química , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Cobre/metabolismo , Cobre/química , Hierro/metabolismo , Metales/metabolismo , Metales/química , Transporte Biológico , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química
11.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026849

RESUMEN

The oligomerization of protein macromolecules on cell membranes plays a fundamental role in regulating cellular function. From modulating signal transduction to directing immune response, membrane proteins (MPs) play a crucial role in biological processes and are often the target of many pharmaceutical drugs. Despite their biological relevance, the challenges in experimental determination have hampered the structural availability of membrane proteins and their complexes. Computational docking provides a promising alternative to model membrane protein complex structures. Here, we present Rosetta-MPDock, a flexible transmembrane (TM) protein docking protocol that captures binding-induced conformational changes. Rosetta-MPDock samples large conformational ensembles of flexible monomers and docks them within an implicit membrane environment. We benchmarked this method on 29 TM-protein complexes of variable backbone flexibility. These complexes are classified based on the root-mean-square deviation between the unbound and bound states (RMSDUB) as: rigid (RMSDUB <1.2 Å), moderately-flexible (RMSDUB ∈ [1.2, 2.2) Å), and flexible targets (RMSDUB > 2.2 Å). In a local docking scenario, i.e. with membrane protein partners starting ≈10 Å apart embedded in the membrane in their unbound conformations, Rosetta-MPDock successfully predicts the correct interface (success defined as achieving 3 near-native structures in the 5 top-ranked models) for 67% moderately flexible targets and 60% of the highly flexible targets, a substantial improvement from the existing membrane protein docking methods. Further, by integrating AlphaFold2-multimer for structure determination and using Rosetta-MPDock for docking and refinement, we demonstrate improved success rates over the benchmark targets from 64% to 73%. Rosetta-MPDock advances the capabilities for membrane protein complex structure prediction and modeling to tackle key biological questions and elucidate functional mechanisms in the membrane environment. The benchmark set and the code is available for public use at github.com/Graylab/MPDock.

12.
Ageing Res Rev ; 100: 102373, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960046

RESUMEN

Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.


Asunto(s)
Lisosomas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Lisosomas/metabolismo , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Canales de Potasio
13.
Microb Pathog ; 194: 106802, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032673

RESUMEN

Interferon-inducible transmembrane protein 3 (IFITM3), a member of the interferon-stimulating factor (ISG) family, has various antiviral functions. Infectious bursal disease virus (IBDV) mainly invades the bursa of Fabricius in chickens, causing a reduction in their immunity and resulting in death from secondary infections. Our previous study found that IBDV infection promotes the expression of chicken IFITM3. However, the role of chicken IFITM3 in IBDV infection remains unknown. To explore this role, the overexpression vector for IFITM3 was constructed and transfected into HD-11 and DF-1 cells. The results showed that the overexpression of IFITM3 significantly reduced IBDV proliferation. While the IBDV proliferation increased when IFITM3 was inhibited by using siRNA. To further explore the mechanism by which IFITM3 reduces IBDV proliferation, the effects of IFITM3 on interferon (IFN) were investigated. Transfecting the constructed IFITM3 vectors into HD-11 and DF-1 cells demonstrated that IFITM3 promoted the expression of IFN-α, IFN-ß, and IFN-γ. To investigate the mechanism by which IFITM3 regulates IFN expression, the effects of IFITM3 on IFN production were explored. The results showed that the IKB gene mainly affected the regulatory effects of IFITM3 on IFN. Taken together, IFITM3 may reduce viral proliferation by regulating changes in IFNs, and this process may involve a positive feedback effect of IFITM3 on IFN. IKB plays an important role in the regulation of IFN effects by IFITM3.


Asunto(s)
Pollos , Virus de la Enfermedad Infecciosa de la Bolsa , Interferones , Proteínas de la Membrana , Replicación Viral , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Animales , Pollos/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Línea Celular , Interferones/metabolismo , Interferones/genética , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/virología , Infecciones por Birnaviridae/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Interferente Pequeño/genética , Regulación de la Expresión Génica , Bolsa de Fabricio/virología , Bolsa de Fabricio/metabolismo , Interferón beta/metabolismo , Interferón beta/genética
14.
Am J Cancer Res ; 14(6): 3010-3035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005682

RESUMEN

Pancreatic adenocarcinoma (PAAD), known as one of the deadliest cancers, is characterized by a complex tumor microenvironment, primarily comprised of cancer-associated fibroblasts (CAFs) in the extracellular matrix. These CAFs significantly alter the matrix by interacting with hyaluronic acid (HA) and the enzyme hyaluronidase, which degrades HA - an essential process for cancer progression and spread. Despite the critical role of this interaction, the specific functions of CAFs and hyaluronidase in PAAD development are not fully understood. Our study investigates this interaction and assesses NSC777201, a new anti-cancer compound targeting hyaluronidase. This research utilized computational methods to analyze gene expression data from the Gene Expression Omnibus (GEO) database, specifically GSE172096, comparing gene expression profiles of cancer-associated and normal fibroblasts. We conducted in-house sequencing of pancreatic cancer cells treated with NSC777201 to identify differentially expressed genes (DEGs) and performed functional enrichment and pathway analysis. The identified DEGs were further validated using the TCGA-PAAD and Human Protein Atlas (HPA) databases for their diagnostic, prognostic, and survival implications, accompanied by Ingenuity Pathway Analysis (IPA) and molecular docking of NSC777201, in-vitro, and preclinical in-vivo validations. The result revealed 416 DEGs associated with CAFs and 570 DEGs related to NSC777201 treatment, with nine overlapping DEGs. A key finding was the transmembrane protein TMEM2, which strongly correlated with FAP, a CAF marker, and was associated with higher-risk groups in PAAD. NSC777201 treatment showed inhibition of TMEM2, validated by rescue assay, indicating the importance of targeting TMEM2. Further analyses, including IPA, demonstrated that NSC777201 regulates CAF cell senescence, enhancing its therapeutic potential. Both in-vitro and in-vivo studies confirmed the inhibitory effect of NSC777201 on TMEM2 expression, reinforcing its role in targeting PAAD. Therefore, TMEM2 has been identified as a theragnostic biomarker in PAAD, influenced by CAF activity and HA accumulation. NSC777201 exhibits significant potential in targeting and potentially reversing critical processes in PAAD progression, demonstrating its efficacy as a promising therapeutic agent.

15.
Heliyon ; 10(11): e32522, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961909

RESUMEN

Objectives: Dihydroartemisinin (DHA), an artemisinin derivative extracted from the traditional Chinese medicinal herb Artemisia annua, has the potential to suppress head and neck squamous cell carcinoma (HNSCC) progression. However, the mechanisms underlying these effects remain unclear. Therefore, we aimed to examine the mechanisms underlying the effects of DHA on tumor invasion and migration. Methods: Human HNSCC cell lines CAL-27 and FaDu were exposed to varying DHA concentrations (0, 5, 20, and 80 µM) for 24 h. Cell proliferation, invasion, and migration were assessed using CCK8, transwell, and wound-healing assays, respectively. Quantitative real-time PCR, western blotting, and immunofluorescence were used to assess the expression levels of the target genes and proteins. Results: DHA suppressed the invasion and migration of CAL-27 and FaDu cells. Additionally, miR-195-5p suppressed the invasion and migration of HNSCC cells. This study revealed significant differences in the expression of miR-195-5p and TENM2 between clinical samples and multiple public databases. DHA treatment and miR-195-5p overexpression significantly reduced TENM2 expression in HNSCC cells, which suggested that miR-195-5p overexpression enhanced the inhibitory effect of DHA on TENM2. Conclusions: This study provides the first evidence that DHA inhibits cell invasion and migration by regulating the miR-195-5p/TENM2 axis in HNSCC cells, suggesting it as a potentially effective treatment strategy for HNSCC.

16.
Vaccines (Basel) ; 12(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39066417

RESUMEN

Tuberculosis (TB) remains a global health threat, necessitating innovative strategies for control and prevention. This comprehensive review explores the Mycobacterium tuberculosis Lysine Exporter (LysE) gene, unveiling its multifaceted roles and potential uses in controlling and preventing tuberculosis (TB). As a pivotal player in eliminating excess L-lysine and L-arginine, LysE contributes to the survival and virulence of M. tuberculosis. This review synthesizes findings from different electronic databases and includes 13 studies focused on the LysE of M. tuberculosis. The research unveils that LysE can be a potential drug target, a diagnostic marker for TB, and a promising candidate for vaccine development. The absence of LysE in the widely used BCG vaccine underscores its uniqueness and positions it as a novel area for TB prevention. In conclusion, this review underscores the significance of LysE in TB pathogenesis and its potential as a drug target, diagnostic marker, and vaccine candidate. The multifaceted nature of LysE positions it at the forefront of innovative approaches to combat TB, calling for sustained research efforts to harness its full potential in the global fight against this infectious disease.

17.
Gastric Cancer ; 27(5): 998-1015, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850316

RESUMEN

Cisplatin (DDP) is a basic chemotherapy drug for gastric cancer (GC). With the increase of DDP drug concentration in clinical treatment, cancer cells gradually became resistant. Therefore, it is necessary to find effective therapeutic targets to enhance the sensitivity of GC to DDP. Studies have shown that Transmembrane protein 205 (TMEM205) is overexpressed in DDP-resistant human epidermoid carcinoma cells and correlates with drug resistance, and database analyses show that TMEM 205 is also overexpressed in GC, but its role in cisplatin-resistant gastric cancer remains unclear. In this study, we chose a variety of experiments in vivo and vitro, aiming to investigate the role of TMEM 205 in cisplatin resistance in gastric cancer. The results showed that TMEM 205 promoted proliferation, stemness, epithelial-mesenchymal transition (EMT), migration and angiogenesis of gastric cancer cells through activation of the Wnt/ß-catenin signaling pathway. In addition, TMEM205 promotes GC progression by inducing M2 polarization of tumor-associated macrophages (TAMs). These results suggest that TMEM205 may be an effective target to regulate the sensitivity of GC to DDP, providing a new therapeutic direction for clinical treatment.


Asunto(s)
Antineoplásicos , Proliferación Celular , Cisplatino , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Proteínas de la Membrana , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Cisplatino/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Antineoplásicos/farmacología , Ratones , Movimiento Celular , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , Antígenos CD/metabolismo , Ratones Endogámicos BALB C
18.
Cell Commun Signal ; 22(1): 323, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867259

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in the development of therapeutic tools in regenerative medicine. However, their quality decreases during in vitro expansion because of heterogeneity and acquired cellular senescence. We investigated the potential role of podoplanin (PDPN) in minimizing cellular senescence and maintaining the stemness of tonsil-derived MSCs (TMSCs). METHODS: TMSCs were isolated from human tonsil tissues using an enzymatic method, expanded, and divided into two groups: early-passaged TMSCs, which were cultured for 3-7 passages, and late-passaged TMSCs, which were passaged more than 15 times. The TMSCs were evaluated for cellular senescence and MSC characteristics, and PDPN-positive and -negative cells were identified by fluorescence-activated cell sorting. In addition, MSC features were assessed in siRNA-mediated PDPN-depleted TMSCs. RESULTS: TMSCs, when passaged more than 15 times and becoming senescent, exhibited reduced proliferative rates, telomere length, pluripotency marker (NANOG, OCT4, and SOX2) expression, and tri-lineage differentiation potential (adipogenesis, chondrogenesis, or osteogenesis) compared to cells passaged less than five times. Furthermore, PDPN protein levels significantly decreased in a passage-dependent manner. PDPN-positive cells maintained their stemness characteristics, such as MSC-specific surface antigen (CD14, CD34, CD45, CD73, CD90, and CD105) and pluripotency marker expression, and exhibited higher tri-lineage differentiation potential than PDPN-negative cells. SiRNA-mediated silencing of PDPN led to decreased cell-cycle progression, proliferation, and migration, indicating the significance of PDPN as a preliminary senescence-related factor. These reductions directly contributed to the induction of cellular senescence via p16Ink4a/Rb pathway activation. CONCLUSION: PDPN may serve as a novel biomarker to mitigate cellular senescence in the clinical application of MSCs.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Glicoproteínas de Membrana , Células Madre Mesenquimatosas , Tonsila Palatina , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Tonsila Palatina/citología , Tonsila Palatina/metabolismo , Diferenciación Celular , Proliferación Celular , Transducción de Señal , Células Cultivadas
19.
Methods Enzymol ; 699: 419-445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942513

RESUMEN

Pyr4-family terpene cyclases are noncanonical transmembrane class II terpene cyclases that catalyze a variety of cyclization reactions in the biosynthesis of microbial terpenoids, such as meroterpenoids. However, although these cyclases are widely distributed in microorganisms, their three-dimensional structures have not been determined, possibly due to the transmembrane locations of these enzymes. In this chapter, we describe procedures for the functional analysis of transmembrane terpene cyclases based on their model structures generated using AlphaFold2. We used AdrI, the Pyr4-family terpene cyclase required for the biosynthesis of andrastin A and its homologs, as an example.


Asunto(s)
Terpenos , Terpenos/metabolismo , Terpenos/química , Proteínas Fúngicas/metabolismo , Ciclización , Modelos Moleculares , Hongos/enzimología , Hongos/metabolismo , Transferasas Alquil y Aril
20.
Cell Mol Life Sci ; 81(1): 209, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710967

RESUMEN

As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Animales , Humanos , Amiloide/metabolismo , Amiloide/genética , Amiloide/química , Lisosomas/metabolismo , Lisosomas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/química , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA