Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros











Intervalo de año de publicación
1.
Results Probl Cell Differ ; 73: 521-535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242391

RESUMEN

Intracellular protozoan pathogens have to negotiate the internal environment of the host cell they find themselves in, as well as manipulate the host cell to ensure their own survival, replication, and dissemination. The transfer of key effector molecules from the pathogen to the host cell is crucial to this interaction and is technically more demanding to study as compared to an extracellular pathogen. While several effector molecules have been identified, the mechanisms and conditions underlying their transfer to the host cell remain partly or entirely unknown. Improvements in experimental systems have revealed tantalizing details of such intercellular transfer, which form the subject of this chapter.


Asunto(s)
Apicomplexa , Interacciones Huésped-Parásitos , Humanos , Interacciones Huésped-Parásitos/fisiología , Apicomplexa/fisiología , Apicomplexa/metabolismo , Animales
2.
Plant Biotechnol J ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180364

RESUMEN

Starch is synthesized as insoluble, semicrystalline particles within plant chloroplast and amyloplast, which are referred to as starch grains (SGs). The size and morphology of SGs in the cereal endosperm are diverse and species-specific, representing a key determinant of the suitability of starch for industrial applications. However, the molecular mechanisms modulating SG size in cereal endosperm remain elusive. Here, we functionally characterized the rice (Oryza sativa) mutant substandard starch grain7 (ssg7), which exhibits enlarged SGs and defective endosperm development. SSG7 encodes a plant-specific DUF1001 domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) CRUMPLED LEAF (AtCRL). SSG7 localizes to the amyloplast membrane in developing endosperm. Several lines of evidence suggest that SSG7 functions together with SSG4 and SSG6, known as two regulators essential for SG development, to control SG size, by interacting with translocon-associated components, which unveils a molecular link between SG development and protein import. Genetically, SSG7 acts synergistically with SSG4 and appears to be functional redundancy with SSG6 in modulating SG size and endosperm development. Collectively, our findings uncover a multimeric functional protein complex involved in SG development in rice. SSG7 represents a promising target gene for the biotechnological modification of SG size, particularly for breeding programs aimed at improving starch quality.

3.
J Biol Chem ; 300(9): 107673, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39128722

RESUMEN

In all domains of life, the ribosome-translocon complex inserts nascent transmembrane proteins into, and processes and transports signal peptide-containing proteins across, membranes. Eukaryotic translocons are anchored in the endoplasmic reticulum, while the prokaryotic complexes reside in cell membranes. Phylogenetic analyses indicate the inheritance of eukaryotic Sec61/oligosaccharyltransferase/translocon-associated protein translocon subunits from an Asgard archaea ancestor. However, the mechanism for translocon migration from a peripheral membrane to an internal cellular compartment (the proto-endoplasmic reticulum) during eukaryogenesis is unknown. Here we show compatibility between the eukaryotic ribosome-translocon complex and Asgard signal peptides and transmembrane proteins. We find that Asgard translocon proteins from Candidatus Prometheoarchaeum syntrophicum strain Candidatus Prometheoarchaeum syntrophicum strain MK-D1, a Lokiarchaeon confirmed to contain no internal cellular membranes, are targeted to the eukaryotic endoplasmic reticulum on ectopic expression. Furthermore, we show that the cytoplasmic domain of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 oligosaccharyltransferase 1 (ribophorin I) can interact with eukaryotic ribosomes. Our data indicate that the location of existing ribosome-translocon complexes, at the protein level, determines the future placement of yet-to-be-translated translocon subunits. This principle predicts that during eukaryogenesis, under positive selection pressure, the relocation of a few translocon complexes to the proto-endoplasmic reticulum will have contributed to propagating the new translocon location, leading to their loss from the cell membrane.

4.
Proc Natl Acad Sci U S A ; 121(28): e2403442121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968107

RESUMEN

Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.


Asunto(s)
Hepatocitos , Hígado , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Esporozoítos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Animales , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Esporozoítos/metabolismo , Esporozoítos/crecimiento & desarrollo , Ratones , Hígado/parasitología , Hígado/metabolismo , Humanos , Hepatocitos/parasitología , Hepatocitos/metabolismo , Malaria Falciparum/parasitología
5.
Elife ; 122024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078397

RESUMEN

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.


Asunto(s)
Epistasis Genética , Proteínas de la Membrana , Pliegue de Proteína , Receptores LHRH , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores LHRH/química , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Mutación , Estabilidad Proteica , Membrana Celular/metabolismo
6.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931009

RESUMEN

The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and enzymatic regulation. Here we demonstrate through yeast genetics, yeast extract pull-down experiments, in situ localization, and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane. Ded1 is physically associated with SRP components in vivo and in vitro. Ded1 is genetically linked with SRP proteins. Finally, the enzymatic activity of Ded1 is inhibited by SRP21 in the presence of SCR1 RNA. We propose a model where Ded1 actively participates in the translocation of proteins during translation. Our results provide a new understanding of the role of Ded1 during translation.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Partícula de Reconocimiento de Señal , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas
7.
Elife ; 132024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896445

RESUMEN

The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61's lateral gate, widening Sec61's central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas , Canales de Translocación SEC , Ribosomas/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Canales de Translocación SEC/metabolismo , Canales de Translocación SEC/química , Retículo Endoplásmico/metabolismo , Conformación Proteica , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Humanos , Modelos Moleculares , Transporte de Proteínas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química
8.
Synth Biol (Oxf) ; 9(1): ysae007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807757

RESUMEN

Giant unilamellar vesicles (GUVs) provide a powerful model compartment for synthetic cells. However, a key challenge is the incorporation of membrane proteins that allow for transport, energy transduction, compartment growth and division. Here, we have successfully incorporated the membrane protein complex SecYEG-the key bacterial translocase that is essential for the incorporation of newly synthesized membrane proteins-in GUVs. Our method consists of fusion of small unilamellar vesicles containing reconstituted SecYEG into GUVs, thereby forming SecGUVs. These are suitable for large-scale experiments while maintaining a high protein:lipid ratio. We demonstrate that incorporation of SecYEG into GUVs does not inhibit its translocation efficiency. Robust membrane protein functionalized proteo-GUVs are promising and flexible compartments for use in the formation and growth of synthetic cells.

9.
Elife ; 132024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787756

RESUMEN

Advanced cryo-EM approaches reveal surprising insights into the molecular structure that allows nascent proteins to be inserted into the membrane of the endoplasmic reticulum.


Asunto(s)
Microscopía por Crioelectrón , Retículo Endoplásmico , Transporte de Proteínas , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química
10.
Methods ; 226: 102-119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604415

RESUMEN

Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.


Asunto(s)
Biología Computacional , Proteínas de la Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Biología Computacional/métodos , Humanos , Modelos Moleculares
11.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531364

RESUMEN

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Asunto(s)
Brucella , Brucelosis , Animales , Ratones , Brucella/fisiología , Proteómica , Brucelosis/metabolismo , Retículo Endoplásmico/metabolismo
12.
Trends Biochem Sci ; 49(2): 105-118, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919225

RESUMEN

Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Transporte de Proteínas , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
ACS Infect Dis ; 9(12): 2652-2664, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37978950

RESUMEN

Multi-drug-resistant Pseudomonas aeruginosa poses a serious threat to hospitalized patients. This organism expresses an arsenal of virulence factors that enables it to readily establish infections and disseminate in the host. The Type 3 secretion system (T3SS) and its associated effectors play a crucial role in the pathogenesis of P. aeruginosa, making them attractive targets for the development of novel therapeutic agents. The T3SS translocon, composed of PopD and PopB, is an essential component of the T3SS secretion apparatus. In the properly assembled translocon, the N-terminus of PopD protrudes into the cytoplasm of the target mammalian cell, which can be exploited as a molecular indicator of functional translocon assembly. In this article, we describe a novel whole-cell-based assay that employs the split NanoLuc luciferase detection system to provide a readout for translocon assembly. The assay demonstrates a favorable signal/noise ratio (13.6) and robustness (Z' = 0.67), making it highly suitable for high-throughput screening of small-molecule inhibitors targeting T3SS translocon assembly.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Humanos , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/genética , Sistemas de Secreción Tipo III , Mamíferos
14.
Vet Res ; 54(1): 108, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993950

RESUMEN

Lawsonia intracellularis, the etiologic agent of proliferative enteropathy (PE), is an obligate intracellular Gram-negative bacterium possessing a type III secretion system (T3SS), which enables the pathogen to translocate effector proteins into targeted host cells to modulate their functions. T3SS is a syringe-like apparatus consisting of a base, an extracellular needle, a tip, and a translocon. The translocon proteins assembled by two hydrophobic membrane proteins can form pores in the host-cell membrane, and therefore play an essential role in the function of T3SS. To date, little is known about the T3SS and translocon proteins of L. intracellularis. In this study, we first analyzed the conservation of the T3S apparatus between L. intracellularis and Yersinia, and characterized the putative T3S hydrophobic major translocon protein LI1158 and minor translocon protein LI1159 in the L. intracellularis genome. Then, by using Yersinia pseudotuberculosis as a surrogate system, we found that the full-length LI1158 and LI1159 proteins, but not the putative class II chaperone LI1157, were secreted in a - Ca2+ and T3SS-dependent manner and the secretion signal was located at the N terminus (aa 1-40). Furthermore, yeast-two hybrid experiments revealed that LI1158 and LI1159 could self-interact, and LI1159 could interact with LI1157. However, unlike CPn0809 and YopB, which are the major hydrophobic translocon proteins of the T3SS of C. pneumoniae and Yersinia, respectively, full-length LI1158 was non-toxic to both yeast and Escherichia coli cells, but full-length LI1159 showed certain toxicity to E. coli cells. Taken together, despite some differences from the findings in other bacteria, our results demonstrate that LI1158 and LI1159 may be the translocon proteins of L. intracellularis T3SS, and probably play important roles in the translocation of effector proteins at the early pathogen infection stage.


Asunto(s)
Lawsonia (Bacteria) , Animales , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Escherichia coli/metabolismo , Saccharomyces cerevisiae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
15.
J Virol ; 97(10): e0112423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792002

RESUMEN

IMPORTANCE: Many plant proteins and some proteins from plant pathogens are dually targeted to chloroplasts and mitochondria, and are supposed to be transported along the general pathways for organellar protein import, but this issue has not been explored yet. Moreover, organellar translocon receptors exist as families of several members whose functional specialization in different cargos is supposed but not thoroughly studied. This article provides novel insights into such topics showing for the first time that an exogenous protein, the melon necrotic spot virus coat protein, exploits the common Toc/Tom import systems to enter both mitochondria and chloroplasts while identifying the involved specific receptors.


Asunto(s)
Arabidopsis , Proteínas de la Cápside , Cloroplastos , Mitocondrias , Nicotiana , Proteínas de Plantas , Receptores de Superficie Celular , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de la Cápside/metabolismo , Proteínas Portadoras/metabolismo , Cloroplastos/metabolismo , Cloroplastos/virología , Mitocondrias/metabolismo , Mitocondrias/virología , Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo
16.
Cell Struct Funct ; 48(2): 211-221, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37766570

RESUMEN

Secretory pathway proteins are cotranslationally translocated into the endoplasmic reticulum (ER) of metazoan cells through the protein channel, translocon. Given that there are far fewer translocons than ribosomes in a cell, it is essential that secretory protein-translating ribosomes only occupy translocons transiently. Therefore, if translocons are obstructed by ribosomes stalled or slowed in translational elongation, it possibly results in deleterious consequences to cellular function. Hence, we investigated how translocon clogging by stalled ribosomes affects mammalian cells. First, we constructed ER-destined translational arrest proteins (ER-TAP) as an artificial protein that clogged the translocon in the ER membrane. Here, we show that the translocon clogging by ER-TAP expression activates triage of signal sequences (SS) in which secretory pathway proteins harboring highly efficient SS are preferentially translocated into the ER lumen. Interestingly, the translocon obstructed status specifically activates inositol requiring enzyme 1α (IRE1α) but not protein kinase R-like ER kinase (PERK). Given that the IRE1α-XBP1 pathway mainly induces the translocon components, our discovery implies that lowered availability of translocon activates IRE1α, which induces translocon itself. This results in rebalance between protein influx into the ER and the cellular translocation capacity.Key words: endoplasmic reticulum, translocation capacity, translocon clogging, IRE1, signal sequence.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Animales , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Señales de Clasificación de Proteína , Triaje , Estrés del Retículo Endoplásmico , Mamíferos/metabolismo
17.
Int J Biol Sci ; 19(13): 4020-4035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705743

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells. Mechanistically, ipomoeassin F, as an inhibitor of Sec61α-containing ER translocon, blocks ER translocation of PDIA6, inducing its proteasomal degradation. Silencing of PDIA6 or PDIA4 by RNA interferences or treatment with a small molecule inhibitor of the protein disulfide isomerases in TNBC cells successfully recapitulated the ipomoeassin F phenotypes, including the induction of ER stress, UPR and autophagy, suggesting that the reduction of PDIAs is the key mediator of the pharmacological effects of ipomoeassin F. Moreover, ipomoeassin F significantly suppressed TNBC growth in a mouse tumor xenograft model, with a marked reduction in PDIA6 and PDIA4 levels in the tumor samples. Our study demonstrates that Sec61α-containing ER translocon and PDIAs are potential drug targets for TNBC and suggests that ipomoeassin F could serve as a lead for developing ER translocon-targeted therapy for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteómica , Glicoconjugados , Modelos Animales de Enfermedad , Chaperonas Moleculares
18.
Toxins (Basel) ; 15(8)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37624243

RESUMEN

Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon, using two distinct cryo-electron microscopy (cryo-EM) models as references, and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. In one model of Sec61 inhibited by mycolactone, we find that isomer B interacts more closely with residues thought to play a key role in signal peptide recognition and, thus, are essential for subsequent protein translocation. In the other model, we find that isomer B interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.


Asunto(s)
Úlcera de Buruli , Humanos , Microscopía por Crioelectrón , Canales de Translocación SEC
19.
Virulence ; 14(1): 2249790, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37621095

RESUMEN

Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.


Asunto(s)
Yersinia pseudotuberculosis , Animales , Yersinia pseudotuberculosis/genética , Sistemas de Secreción Tipo III/genética , Inmunidad Innata , Macrófagos , Yersinia
20.
J Biol Chem ; 299(8): 104939, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331602

RESUMEN

The relationship between lipid homeostasis and protein homeostasis (proteostasis) is complex and remains incompletely understood. We conducted a screen for genes required for efficient degradation of Deg1-Sec62, a model aberrant translocon-associated substrate of the endoplasmic reticulum (ER) ubiquitin ligase Hrd1, in Saccharomyces cerevisiae. This screen revealed that INO4 is required for efficient Deg1-Sec62 degradation. INO4 encodes one subunit of the Ino2/Ino4 heterodimeric transcription factor, which regulates expression of genes required for lipid biosynthesis. Deg1-Sec62 degradation was also impaired by mutation of genes encoding several enzymes mediating phospholipid and sterol biosynthesis. The degradation defect in ino4Δ yeast was rescued by supplementation with metabolites whose synthesis and uptake are mediated by Ino2/Ino4 targets. Stabilization of a panel of substrates of the Hrd1 and Doa10 ER ubiquitin ligases by INO4 deletion indicates ER protein quality control is generally sensitive to perturbed lipid homeostasis. Loss of INO4 sensitized yeast to proteotoxic stress, suggesting a broad requirement for lipid homeostasis in maintaining proteostasis. A better understanding of the dynamic relationship between lipid homeostasis and proteostasis may lead to improved understanding and treatment of several human diseases associated with altered lipid biosynthesis.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Lípidos , Proteínas de Saccharomyces cerevisiae , Antiinfecciosos/farmacología , Farmacorresistencia Fúngica/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Higromicina B/farmacología , Lípidos/biosíntesis , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA