Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 876492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865029

RESUMEN

Genetic control strategies such as the Release of Insects Carrying a Dominant Lethal (RIDL) gene and Transgenic Embryonic Sexing System (TESS) have been demonstrated in the laboratory and/or deployed in the field. These strategies are based on tetracycline-off (Tet-off) systems which are regulated by antibiotics such as Tet and doxycycline (Dox). Here, we generated several Tet-off constructs carrying a reporter gene cassette mediated by a 2A peptide. Different concentrations (0.1, 10, 100, 500, and 1,000 µg/mL) and types (Tet or Dox) of antibiotics were used to evaluate their effects on the expression of the Tet-off constructs in the Drosophila S2 cells. One or both of the two concentrations, 100 and 250 µg/mL, of Tet or Dox were used to check the influence on the performances of a Drosophila suzukii wild-type strain and female-killing (FK) strains employing TESS. Specifically, the Tet-off construct for these FK strains contains a Drosophila suzukii nullo promoter to regulate the tetracycline transactivator gene and a sex-specifically spliced pro-apoptotic gene hid Ala4 to eliminate females. The results suggested that the in vitro expression of the Tet-off constructs was controlled by antibiotics in a dose-dependent manner. ELISA experiments were carried out identifying Tet at 34.8 ng/g in adult females that fed on food supplemented with Tet at 100 µg/mL. However, such method did not detect Tet in the eggs produced by antibiotic-treated flies. Additionally, feeding Tet to the parents showed negative impact on the fly development but not the survival in the next generation. Importantly, we demonstrated that under certain antibiotic treatments females could survive in the FK strains with different transgene activities. For the strain V229_M4f1 which showed moderate transgene activity, feeding Dox to fathers or mothers suppressed the female lethality in the next generation and feeding Tet or Dox to mothers generated long-lived female survivors. For the strain V229_M8f2 which showed weak transgene activity, feeding Tet to mothers delayed the female lethality for one generation. Therefore, for genetic control strategies employing the Tet-off system, the parental and transgenerational effects of antibiotics on the engineered lethality and insect fitness must be carefully evaluated for a safe and efficient control program.

2.
BMC Genet ; 21(Suppl 2): 143, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339501

RESUMEN

BACKGROUND: The New World Screwworm fly (NWS), Cochliomyia hominivorax, is an ectoparasite of warm-blooded animals and a major pest of livestock in parts of South America and the Caribbean where it remains endemic. In North and Central America it was eradicated using the Sterile Insect Technique (SIT). A control program is managed cooperatively between the governments of the United States and Panama to prevent the northward spread of NWS from infested countries in South America. This is accomplished by maintaining a permanent barrier through the release of millions of sterile male and female flies in the border between Panama and Colombia. Our research team demonstrated the utility of biotechnology-enhanced approaches for SIT by developing a male-only strain of the NWS. The strain carried a single component tetracycline repressible female lethal system where females died at late larval/pupal stages. The control program can be further improved by removing females during embryonic development as larval diet costs are significant. RESULTS: The strains developed carry a two-component system consisting of the Lucilia sericata bottleneck gene promoter driving expression of the tTA gene and a tTA-regulated Lshid proapoptotic effector gene. Insertion of the sex-specifically spliced intron from the C. hominivorax transformer gene within the Lshid gene ensures that only females die when insects are reared in the absence of tetracycline. In several double homozygous two-component strains and in one "All-in-one" strain that had both components in a single construct, female lethality occurred at the embryonic and/or first instar larval stages when raised on diet without tetracycline. Laboratory evaluation for phenotypes that are relevant for mass rearing in a production facility revealed that most strains had fitness characteristics similar to the wild type J06 strain that is currently reared for release in the permanent barrier. Testing of an "All in one" strain under mass rearing conditions showed that the strain maintained the fitness characteristics observed in small-scale rearing. CONCLUSIONS: The early female lethal strains described here could be selected by the NWS Control Program for testing at large scale in the production facility to enhance the efficiency of the NWS eradication program.


Asunto(s)
Dípteros/genética , Genes Letales , Control de Insectos , Animales , Animales Modificados Genéticamente , Biotecnología , Dípteros/embriología , Desarrollo Embrionario , Femenino , Aptitud Genética , Infertilidad/genética , Masculino , Regiones Promotoras Genéticas , Tetraciclina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA