Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.886
Filtrar
1.
Methods Mol Biol ; 2848: 169-186, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240523

RESUMEN

The retinal explant culture system is a valuable tool for studying the pharmacological, toxicological, and developmental aspects of the retina. It is also used for translational studies such as gene therapy. While no photoreceptor-like cell lines are available for in vitro studies of photoreceptor cell biology, the retinal explant culture maintains the laminated retinal structure ex vivo for as long as a month. Human and nonhuman primate (NHP) postmortem retinal explants cut into small pieces offer the possibility of testing multiple conditions for safety and adeno-associated viral (AAV) vector optimization. In addition, the cone-enriched foveal area can be studied using the retinal explants. Here, we present a detailed working protocol for retinal explant isolation and culture from mouse, human, and NHP for testing drug efficacy and AAV transduction. Future applications of this protocol include combining live imaging and multiwell retinal explant culture for high-throughput drug screening systems in rodent and human retinal explants to identify new drugs against retinal degeneration.


Asunto(s)
Dependovirus , Retina , Animales , Humanos , Ratones , Retina/citología , Dependovirus/genética , Primates , Vectores Genéticos/genética , Técnicas de Cultivo de Tejidos/métodos , Transducción Genética
2.
Front Chem ; 12: 1436322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220829

RESUMEN

Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/ß and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.

3.
Acta Pharm Sin B ; 14(8): 3295-3311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220870

RESUMEN

Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.

4.
Curr Mol Pharmacol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39225205

RESUMEN

The main cause of cancer-related fatalities is cancer metastasis to other body parts, and increased glycolysis is crucial for cancer cells to maintain their elevated levels of growth and energy requirements, ultimately facilitating the invasion and spread of tumors. The Warburg effect plays a significant role in the advancement of cancer, and focusing on the suppression of aerobic glycolysis could offer a promising strategy for anti-cancer treatment. Various glycolysis processes are associated with tumor metastasis, primarily involving non-coding RNA (ncRNAs), signaling pathways, transcription factors, and more. Various categories of noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have shown promise in influencing glucose metabolism associated with the spread of tumors. Additionally, circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) predominantly act as competitive endogenous RNAs (ceRNAs) by sequestering microRNAs, thereby modulating the expression of target genes and exerting significant influence on the metabolic processes of cancerous cells. Furthermore, the process of tumor metastasis through glycolysis also encompasses various signaling pathways (such as PI3K/AKT, HIF, Wnt/ß- Catenin, and ERK, among others) and transcription factors. This article delineates the primary mechanisms through which non-coding RNAs, signaling pathways, and transcription factors contribute to glycolysis in tumor metastasis. It also investigates the potential use of these factors as prognostic markers and targets for cancer treatment. The manuscript also explores the innovative applications of specific traditional Chinese medicine and clinical Western medications in inhibiting tumor spread through glycolysis mechanisms, offering potential as new candidates for anti-cancer drugs.

5.
Appl Environ Microbiol ; : e0101224, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258917

RESUMEN

Bioconversion of abundant lactose-replete whey permeate to value-added chemicals holds promise for valorization of this expanding food processing waste. Efficient conversion of whey permeate-borne lactose requires adroit microbial engineering to direct carbon to the desired chemical. An engineered strain of Clostridium beijerinckii NCIMB 8052 (C. beijerinckii_mgsA+mgR) that produces 87% more butanol on lactose than the control strain was assessed for global transcriptomic changes. The results revealed broadly contrasting gene expression patterns in C. beijerinckii_mgsA+mgR relative to the control strain. These were characterized by widespread decreases in the abundance of mRNAs of Fe-S proteins in C. beijerinckii_mgsA+mgR, coupled with increased differential expression of lactose uptake and catabolic genes, iron uptake genes, two-component signal transduction and motility genes, and genes involved in the biosynthesis of vitamins B5 and B12, aromatic amino acids (particularly tryptophan), arginine, and pyrimidines. Conversely, the mRNA patterns suggest that the L-aspartate-dependent de novo biosynthesis of NAD as well as biosynthesis of lysine and asparagine and metabolism of glycine and threonine were likely down-regulated. Furthermore, genes involved in cysteine and methionine biosynthesis and metabolism, including cysteine desulfurase-a central player in Fe-S cluster biosynthesis-equally showed reductions in mRNA abundance. Genes involved in biosynthesis of capsular polysaccharides and stress response also showed reduced mRNA abundance in C. beijerinckii_mgsA+mgR. The results suggest that remodeling of cellular and metabolic networks in C. beijerinckii_mgsA+mgR to counter anticipated effects of methylglyoxal production from heterologous expression of methylglyoxal synthase led to enhanced growth and butanol production in C. beijerinckii_mgsA+mgR. IMPORTANCE: Biological production of commodity chemicals from abundant waste streams such as whey permeate represents an opportunity for decarbonizing chemical production. Whey permeate remains a vastly underutilized feedstock for bioproduction purposes. Thus, enhanced understanding of the cellular and metabolic repertoires of lactose-mediated production of chemicals such as butanol promises to identify new targets that can be fine tuned in recombinant and native microbial strains to engender stronger coupling of whey permeate-borne lactose to value-added chemicals. Our results highlight new genetic targets for future engineering of C. beijerinckii for improved butanol production on lactose and ultimately in whey permeate.

6.
Plant Cell ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259296

RESUMEN

Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.

7.
Cell Mol Biol Lett ; 29(1): 119, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244559

RESUMEN

BACKGROUND: Drug-induced liver injury (DILI) is gradually becoming a common global problem that causes acute liver failure, especially in acute hepatic damage caused by acetaminophen (APAP). Paeoniflorin (PF) has a wide range of therapeutic effects to alleviate a variety of hepatic diseases. However, the relationship between them is still poorly investigated in current studies. PURPOSE: This work aimed to explore the protective effects of PF on APAP-induced hepatic damage and researched the potential molecular mechanisms. METHODS: C57BL/6J male mice were injected with APAP to establish DILI model and were given PF for five consecutive days for treatment. Aiming to clarify the pharmacological effects, the molecular mechanisms of PF in APAP-induced DILI was elucidated by high-throughput and other techniques. RESULTS: The results demonstrated that serum levels of ALP, γ-GT, AST, TBIL, and ALT were decreased in APAP mice by the preventive effects of PF. Moreover, PF notably alleviated hepatic tissue inflammation and edema. Meanwhile, the results of TUNEL staining and related apoptotic factors coincided with the results of transcriptomics, suggesting that PF inhibited hepatocyte apoptosis by regulated MAPK signaling. Besides, PF also acted on reactive oxygen species (ROS) to regulate the oxidative stress for recovery the damaged mitochondria. More importantly, transmission electron microscopy showed the generation of autophagosomes after PF treatment, and PF was also downregulated mTOR and upregulated the expression of autophagy markers such as ATG5, ATG7, and BECN1 at the mRNA level and LC3, p62, ATG5, and ATG7 at the protein level, implying that the process by which PF exerted its effects was accompanied by the occurrence of autophagy. In addition, combinined with molecular dynamics simulations and western blotting of MAPK, the results suggested p38 as a direct target for PF on APAP. Specifically, PF-activated autophagy through the downregulation of MAPK/mTOR signaling, which in turn reduced APAP injury. CONCLUSIONS: Paeoniflorin mitigated liver injury by activating autophagy to suppress oxidative stress and apoptosis via the MAPK/mTOR signaling pathway. Taken together, our findings elucidate the role and mechanism of paeoniflorin in DILI, which is expected to provide a new therapeutic strategy for the development of paeoniflorin.


Asunto(s)
Acetaminofén , Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas , Glucósidos , Hepatocitos , Ratones Endogámicos C57BL , Monoterpenos , Serina-Treonina Quinasas TOR , Animales , Autofagia/efectos de los fármacos , Glucósidos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Monoterpenos/farmacología , Masculino , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Acetaminofén/efectos adversos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos
8.
mBio ; : e0100224, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230277

RESUMEN

During its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the transition from the motile to the sessile lifestyle. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and promotes the motile lifestyle: HmrA (holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that form a putative phosphorelay pathway with HmrA. We postulate that the Hmr pathway acts as a rheostat to control the proportion of cells harboring a flagellum or a holdfast in the population. Further genetic analysis suggests that the Hmr pathway impacts c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Our results also indicate that the Hmr pathway is involved in the regulation of motile to sessile lifestyle transition as a function of various environmental factors: biofilm formation is repressed when excess copper is present and derepressed under non-optimal temperatures. Finally, we provide evidence that the Hmr pathway regulates motility and adhesion without modulating the transcription of the holdfast synthesis regulator HfiA. IMPORTANCE: Complex communities attached to a surface, or biofilms, represent the major lifestyle of bacteria in the environment. Such a sessile state enables the inhabitants to be more resistant to adverse environmental conditions. Thus, having a deeper understanding of the underlying mechanisms that regulate the transition between the motile and the sessile states could help design strategies to improve biofilms when they are beneficial or impede them when they are detrimental. For Caulobacter crescentus motile cells, the transition to the sessile lifestyle is irreversible, and this decision is regulated at several levels. In this work, we describe a putative phosphorelay that promotes the motile lifestyle and inhibits biofilm formation, providing new insights into the control of adhesin production that leads to the formation of biofilms.

9.
Environ Pollut ; : 124945, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265771

RESUMEN

Cadmium (Cd) exhibits widely olfactory toxicity to animals. We previously reported that Cd exposure induces the transcriptional dysregulation of olfactory marker proteins (OMPs) of the red imported fire ant Solenopsis invicta. However, it is still unclear how environmental Cd exposure-induced deregulation of OMPs affects the olfactory signal transduction and olfaction-driven social behavior of S. invicta. Here, we showed that S. invicta displayed dull sensory perception on bait in Cd-contaminated areas and dietary Cd ingestion by S. invicta reduced the bait search efficiency. We hypothesize that deregulation of OMPs by Cd exposure blocks the olfactory signal transduction in fire ants. Our results indicated the odor binding protein 14 (SiOBP14) was consistently inhibited in antennal sensilla of fire ants across Cd exposure at 0.5, 5 and 50 mg/kg. Function analysis in vitro and in vivo demonstrated that SiOBP14 is essential in perception of S. invicta to bait odorants. Cd-exposed fire ants showed weak odorant receptor neurons (ORNs) chemosensory signaling and electroantennogram (EAG) response. Moreover, Cd exposure repeals the preference of S. invicta to the active bait odorants, including 2-methyltetrahydrofuran-3-one, 2-methyl-3-furanthiol and 4,5-dimethylthiazole, and even triggers a behavioral transition from preference to repellence. These results indicate that Cd exposure inhibits the specific OMP expression and disrupts olfactory signal transduction, thereby inducing dull sensory perception of S. invicta to bait odorants. The findings provide new implications for monitoring and control of agricultural insect pests in heavy metal polluted areas.

10.
J Chromatogr A ; 1734: 465320, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39217737

RESUMEN

Adeno-associated viruses (AAVs) have emerged as a prominent family of vectors for gene delivery, providing therapeutic options to diseases once deemed incurable. At the same time, they necessitate efficient and affordable purification methods that can be platformed to serve all AAV serotypes. Current chromatographic tools, while affording high product purity, fail to bind certain serotypes, provide limited yield and lifetime, and impose harsh elution conditions that can compromise the vector's activity and safety. Addressing these challenges, this work demonstrates the application of new peptide ligands as the first serotype-agnostic technology for AAV purification by affinity chromatography. Our study reveals a pH-dependent affinity interaction: AAV2, AAV3, AAV6, AAV9, and AAVrh.10 are effectively captured at neutral pH, while binding AAV1, AAV5, AAV7, and AAV8 is stronger in a slightly acidic environment. The elution of bound AAVs was achieved using magnesium chloride at neutral pH for all serotypes, consistently affording capsid yields above 50% and genome yields above 80%, together with a >100-fold reduction in host cell proteins and nucleic acids. In particular, peptide ligand A10 exhibited remarkable binding capacity (> 1014 vp per mL of resin) and purification performance for all AAV serotypes, demonstrating broad applicability for gene therapy manufacturing. Finally, this work introduces novel alkaline-stable variants of A10 and demonstrates their use as the first affinity ligands capable of performing multiple cycles of AAV2, AAV8, and AAV9 purification with intermediate caustic cleaning without loss of capacity or product quality. Collectively, these results demonstrate the promise of this technology to further the impact and affordability of gene therapy.


Asunto(s)
Cromatografía de Afinidad , Dependovirus , Péptidos , Serogrupo , Dependovirus/aislamiento & purificación , Dependovirus/genética , Dependovirus/química , Cromatografía de Afinidad/métodos , Péptidos/química , Péptidos/aislamiento & purificación , Humanos , Concentración de Iones de Hidrógeno , Vectores Genéticos , Células HEK293
11.
Chem Biol Interact ; 403: 111226, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39237072

RESUMEN

Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.

12.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273251

RESUMEN

Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms-IGF-1Ea, IGF-1Eb, and IGF-1Ec-act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets.


Asunto(s)
Neoplasias de la Mama , Factor I del Crecimiento Similar a la Insulina , Isoformas de Proteínas , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Isoformas de Proteínas/metabolismo , Femenino , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Transición Epitelial-Mesenquimal , Animales , Proliferación Celular , Péptidos Similares a la Insulina
13.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273439

RESUMEN

Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.


Asunto(s)
Resistencia a la Enfermedad , Micorrizas , Enfermedades de las Plantas , Micorrizas/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/microbiología , Plantas/inmunología , Simbiosis , Raíces de Plantas/microbiología , Inmunidad de la Planta
14.
Plants (Basel) ; 13(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39274009

RESUMEN

Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.

15.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274878

RESUMEN

Ulcerative colitis (UC) is a typical inflammatory bowel disease (IBD), impairing the quality of life of patients. Dehydroevodiamine (DHE) is an active alkaloid isolated from Tetradium ruticarpum that exerts significant anti-inflammatory effects in gastrointestinal diseases. However, the effect and mechanisms of DHE on UC remain unclear. We performed a DSS-induced experimental UC rat model to reveal the efficacy and potential mechanisms of DHE on UC. HE and AB-PAS staining were used for the evaluation of pathologies, and 16S rRNA sequencing was used to detect changes in gut microbes. Metabolomics was used to detect changes in serum metabolites. Network pharmacology and transcriptomics were conducted to reveal the underlying mechanisms of DHE for UC. HuProt proteome microarrays, molecular docking, and SPR were used to reveal the targets of action of DHE. WB, RT-qPCR, and IHC were used to assess the action effects of DHE. DHE demonstrated significant alleviation of DSS-induced colitis symptoms in rats by suppressing inflammatory and oxidative stress responses, amending colonic barrier injury, and inhibiting apoptosis. In terms of gut microbial modulation, DHE decreased the abundance of Allobaculum, Clostridium, Escherichia, Enterococcus, and Barnesiella and increased the abundance of Lactobacillus, Bifidobacterium, and SMB5. Moreover, metabolomics suggested that the regulation of DHE in DSS-induced UC rats mainly involved aminoacyl-tRNA biosynthesis, vitamin B6 metabolism, phenylalanine, tyrosine, and so on. Mechanically, DHE alleviated UC in rats by targeting AKT1, thereby inhibiting the PI3K/AKT/NF-κB signaling pathway.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Ratas , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Sulfato de Dextran
16.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274936

RESUMEN

One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.


Asunto(s)
Antiinflamatorios , Péptidos de Penetración Celular , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
17.
STAR Protoc ; 5(3): 103305, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276355

RESUMEN

Calcium imaging has become a popular way to probe astrocyte activity, but few techniques holistically capture discrete calcium signals occurring across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the spatio-temporal analysis of regional dynamics and unbiased sorting of transients from fluorescence recordings of astrocytes. We describe steps for installing software, detecting active pixel patches, obtaining region of activity (ROA) maps, and extracting time series from ROAs. We then detail procedures for extracting signal features using custom-made code.

18.
Adv Exp Med Biol ; 1461: 15-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39289271

RESUMEN

The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.


Asunto(s)
Microdominios de Membrana , Microdominios de Membrana/metabolismo , Microdominios de Membrana/química , Humanos , Animales , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Transducción de Señal , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Termodinámica , Membrana Celular/metabolismo , Membrana Celular/química , Biomimética/métodos , Colesterol/química , Colesterol/metabolismo
19.
Future Oncol ; : 1-6, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279671

RESUMEN

Clinicians have recognized the similarities and differences between the two subtypes of common epidermal growth factor receptor (EGFR) mutations, but actual treatment strategies have not yet changed. The L858R mutation can be understood by considering the pharmacological conformational plasticity of the receptor protein and the presence of other co-occurring mutations, whether subtypes of EGFR or non-EGFR mutations and differences in downstream signaling pathways. As long as we know that molecular differences lead to biological differences, it is a challenge for all of us that our treatment strategies must change.


[Box: see text].

20.
Adv Sci (Weinh) ; : e2306018, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283032

RESUMEN

Stress concentration surrounding wounds drives fibroblasts into a state of high mechanical tension, leading to the delay of wound healing, exacerbating pathological fibrosis, and even causing tissue dysfunction. Here, an innovative skin stress-shielding hydrogel wound dressing is reported that makes the wound sites shrink as a response to body temperature and then remolds the stress micro-environment of wound sites to reduce the formation of skin scars. Composed of a modified natural temperature-sensitive polymer cross-linked with polyacrylic acid networks, this hydrogel wound dressing has demonstrated a substantial decrease in scar area for full-thickness wounds in rat models. The physical forces exerted by the wound dressing are instrumental in attenuating the activation and transduction of fibroblasts within the wound sites, thereby mitigating the excessive deposition of the extracellular matrix (ECM). Notably, the wound dressing significantly down-regulates the expression of transforming growth factor-ß1(TGF-ß1) and collagen I, while concurrently exerting a dramatic inhibitory effect on the integrin-focal adhesion kinase (FAK)/phosphorylated-FAK (p-FAK) signaling pathway. Collectively, the fabrication of functional hydrogels with a stress-shielding profile is a new route for achieving scar-less wound healing, thus offering immense potential for improving clinical outcomes and restoring tissue integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA