Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18061, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103373

RESUMEN

Interjurisdictional migrations lead to seasonally changing patterns of exploitation risk, emphasizing the importance of spatially explicit approaches to fishery management. Understanding how risk changes along a migration route supports time-area based fishery management, but quantifying risk can be complicated when multiple fishing methods are geographically segregated and when bycatch species are considered. Further, habitat selection in dynamic environments can influence migration behavior, interacting with other management objectives such as water quality and habitat restoration. As a case study, we examined a novel acoustic telemetry data set for Lake Whitefish in Lake Erie, where they migrate through multiple spatial management units that are variably affected by seasonal hypoxia and host a variety of fisheries. Combining telemetry results with fishery catch and water quality monitoring, we demonstrate three exploitation risk scenarios: (i) high risk due to high residency and high catch, (ii) high risk due to high residency in time-areas with moderate catch, and (iii) low risk due to residency in time-areas with low catch. Interestingly, occupation of low risk refugia was increased by the development of hypoxia in adjacent areas. Consequently, fishery management goals to sustainably manage other target species may be directly and indirectly linked to water quality management goals through Lake Whitefish.


Asunto(s)
Migración Animal , Explotaciones Pesqueras , Lagos , Salmonidae , Animales , Migración Animal/fisiología , Salmonidae/fisiología , Ecosistema , Calidad del Agua , Estaciones del Año , Conservación de los Recursos Naturales/métodos , Telemetría , Hipoxia
2.
Pest Manag Sci ; 80(9): 4650-4664, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38775404

RESUMEN

BACKGROUND: The beet webworm, Loxostege sticticalis, a worldwide pest of many crops, performs a seasonal migration, causing periodic outbreaks in Asia, Europe and North America. Although long-distance migration is well documented in China, patterns of transboundary migration among China, Russia and Mongolia are largely unknown. We performed a phase analysis of L. sticticalis periodic outbreaks among three countries based on 30 years of historical population data, analyzed the wind systems during migration over boundary regions, and traced the migratory routes in a case study of outbreaks in 2008 by trajectory simulation. RESULTS: Highly synchronized outbreak years of L. sticticalis were observed between China and Mongolia, China and eastern Siberia, China and western Siberia, Mongolia and eastern Siberia, eastern Siberia and western Siberia from 1978 to 2008, indicating possible transboundary migration between these regions. Winds at 300-600 m altitude, where adult migration usually occurs, also showed a high probability of northwestern winds in Haila'er (China), Chita (Russia) and Choybalsan (Mongolia), favoring successful adult migration from these areas to northern and northeastern China. Back trajectory analysis further showed that the first-generation adults that caused the severe outbreak of second-generation larvae in 2008 originated from eastern Siberia, eastern Mongolia, and the boundary regions of China-Russia and China-Mongolia. CONCLUSION: Our findings demonstrated that the source of L. sticticalis outbreaks in northern China was closely related to the outbreaks in Siberia and Mongolia via long-distance transboundary windborne migration. This information will help guide international monitoring and management strategies against this notorious pest. © 2024 Society of Chemical Industry.


Asunto(s)
Migración Animal , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Mongolia , Federación de Rusia , China , Larva/crecimiento & desarrollo
3.
Insects ; 15(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38786891

RESUMEN

The common cutworm, Spodoptera litura (F.), feeds on a wide variety of food and cash crops and is one of the most widespread and destructive agricultural pests worldwide. Migration is the biological basis of its regional population outbreaks but the seasonal movement of this pest between east and south Asia regions remains unknown. In this study, searchlight traps were used to monitor the seasonal migration of S. litura from 2019 to 2023 in Ruili City (Yunnan, China), located along the insect migratory route between China and the south Asia region. The results showed that migratory activity could occur throughout the year, with the main periods found in spring (April-May) and autumn (October-December). The ovarian development and mating status of the trapped females indicated that most individuals were in the middle or late stages of migration and that Ruili City was located in the transit area of the long-distance migration of the pest. In the migration trajectory simulation, populations of S. litura moved from northeast India, Bangladesh, and northern Myanmar to southwestern China along the southern margin of the Himalayas in spring and returned to the south Asia region in autumn. Our findings clarify the seasonal migration patterns of S. litura in China and South Asia and facilitate the development of regional cross-border monitoring and management systems for this pest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA