Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Hazard Mater ; 480: 135810, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288519

RESUMEN

The study investigates the sources of metals in urban road dusts using elemental concentration and Pb isotopic ratios. The elemental concentrations are also utilized to determine the present heavy metal emissions as well as projected emissions till 2045. Bayesian mixing model for source apportionment highlights the significant contributions of both exhaust and non-exhaust sources to the metal-enriched urban road dusts, with each contributing approximately 40 %. Emission analysis reveals that India's projected electric vehicle (EV) penetration may not be sufficient to suppress the metal emissions from vehicular exhausts. Further challenge is posed by high metal concentrations in the non-exhaust sources, that dominates the emission of some metals compared to exhaust sources. If the metal concentrations remain unchanged, the emission analysis predicts alarming increases in total emissions from all the exhaust and non-exhaust sources by 174 %, 176 %, 163 % and 184 % for Ni, Cu, Zn and Pb, respectively, from 2022 to 2045. Thus, it is crucial to reduce the metal concentrations in traffic emission sources and also impose better regulatory measures to improve the urban metal pollution scenario.

2.
Sci Total Environ ; 949: 175073, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089381

RESUMEN

Emissions of nitrogen oxides (NOx) are a dominant contributor to ambient nitrogen dioxide (NO2) concentrations, but the quantitative relationship between them at an intracity scale remains elusive. The Chengdu 2021 FISU World University Games (July 22 to August 10, 2023) was the first world-class multisport event in China after the COVID-19 pandemic which led to a substantial decline in NOx emissions in Chengdu. This study evaluated the impact of variations in NOx emissions on NO2 concentrations at a fine spatiotemporal scale by leveraging this event-driven experiment. Based on ground-based and satellite observations, we developed a data-driven approach to estimate full-coverage hourly NO2 concentrations at 1 km resolution. Then, a random-forest-based meteorological normalization method was applied to decouple the impact of meteorological conditions on NO2 concentrations for every grid cell, the resulting data were then compared with the timely bottom-up NOx emissions. The SHapley-Additive-exPlanation (SHAP) method was employed to delineate the individual contributions of meteorological factors and various emission sources to the changes in NO2 concentrations. According to the full-coverage meteorologically normalized NO2 concentrations, a decrease in NOx emissions and favorable meteorological conditions accounted for 80 % and 20 % of the NO2 reduction, respectively, across Chengdu city during the control period. Within the strict control zone, a 30 % decrease in the meteorologically normalized NO2 concentrations was observed during the control period. The normalized NO2 concentrations demonstrated a strong correlation with NOx emissions (R = 0.96). Based on the SHAP analysis, traffic emissions accounted for 73 % of the reduction in NO2 concentrations, underscoring the significance of traffic control measures in improving air quality in urban areas. This study provides insights into the relationship between NO2 concentrations and NOx emissions using real-world data, which implies the substantial benefits of vehicle electrification for sustainable urban development.

3.
Environ Sci Technol ; 58(32): 14348-14360, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39092553

RESUMEN

High resolution exposure surfaces are essential to capture disparities in exposure to traffic-related air pollution in urban areas. In this study, we develop an approach to downscale Chemical Transport Model (CTM) simulations to a hyperlocal level (∼100m) in the Greater Toronto Area (GTA) under three scenarios where emissions from cars, trucks and buses are zeroed out, thus capturing the burden of each transportation mode. This proposed approach statistically fuses CTMs with Land-Use Regression using machine learning techniques. With this proposed downscaling approach, changes in air pollutant concentrations under different scenarios are appropriately captured by downscaling factors that are trained to reflect the spatial distribution of emission reductions. Our validation analysis shows that high-resolution models resulted in better performance than coarse models when compared with observations at reference stations. We used this downscaling approach to assess disparities in exposure to nitrogen dioxide (NO2) for populations composed of renters, low-income households, recent immigrants, and visible minorities. Individuals in all four categories were disproportionately exposed to the burden of cars, trucks, and buses. We conducted this analysis at spatial resolutions of 12, 4, 1 km, and 100 m and observed that disparities were significantly underestimated when using coarse spatial resolutions. This reinforces the need for high-spatial resolution exposure surfaces for environmental justice analyses.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Emisiones de Vehículos , Humanos , Exposición a Riesgos Ambientales , Modelos Químicos , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis
4.
Chemosphere ; 361: 142497, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825248

RESUMEN

Ammonia (NH3) plays an important role in the formation of atmospheric particulate matter, but the contribution of traffic-related emissions remains unclear, particularly in megacities with a large number of vehicles. Taking the opportunity of the stringent COVID-19 lockdowns implemented in Beijing and Shanghai in 2022, this study aims to estimate the traffic-related NH3 emissions in these two megacities based on satellite observations. Differences between urban and suburban areas during the lockdown and non-lockdown periods are compared. It was found that despite different dominating sources, the overall NH3 concentrations in urban and suburban areas were at a similar level, and the lockdown resulted in a more prominent decrease in urban areas, where traffic activities were most heavily affected. The traffic-related contribution to the total emission was estimated to be ∼30% in megacities, and ∼40% in urban areas, which are about 2-10 times higher than that in previous studies. The findings indicate that the traffic-related NH3 emissions have been significantly underestimated in previous studies and may play a more critical role in the formation of air pollution in megacities, especially in winter, when agricultural emissions are relatively low. This study highlights the importance of traffic-related NH3 emissions in Chinese megacities and the need to reassess the emissions and their impacts on air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Amoníaco , COVID-19 , Ciudades , Monitoreo del Ambiente , Emisiones de Vehículos , Amoníaco/análisis , COVID-19/epidemiología , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , China , Contaminación del Aire/estadística & datos numéricos , Humanos , Material Particulado/análisis , SARS-CoV-2 , Beijing
5.
Environ Sci Pollut Res Int ; 31(17): 25238-25257, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468011

RESUMEN

Particulate matter (PM) is an important component in the atmosphere, affecting air quality, health, radiation balance, and global climate. To assess regional air quality in the city of Fez, an intensive field campaign was carried out in the autumn of 2019 in the Middle Atlas region of Morocco. Aerosol sampling was performed simultaneously at two urban sites in the city of Fez: (1) Fez University (FU), a sub-urban site, and (2) Fez Parc (FP), an urban site located in the city center of Fez, using PM10 collectors. Various laboratory analyses were carried out, including PM mass, trace metals, inorganic ions, OC/EC, sugar compounds, and PAHs. The results indicate that the PM10 mass (61 ng m-3) was comparable at both sites, with a 37-107 ng m-3 range. Most of the 19 investigated PAHs at the FU site (10.2 ± 6.2 ng m-3) were low-molecular-weight PAHs, while the most abundant PAHs at the FP site (6.9 ± 3.8 ng m-3) were mainly higher-molecular-weight PAHs. A diagnostic ratio analysis at both sites indicated that PAHs originated from fossil fuel combustion and traffic emissions from diesel engines, with Ant/(Ant + Phe) and Flu/(Flu + Pyr) ratios averaging 0.22 and 0.84, respectively. PMF analysis identified traffic emissions as a major source (30%), with secondary inorganic aerosols (20%) and biomass burning (14%). Polar plots highlight the dominance of local anthropogenic activities in PM pollution, with vehicular emissions, industrial activities, and biomass burning. This study shows that local sources and combustion processes significantly contribute to PM10 sources in Morocco, providing insights into air pollution mitigation in North Africa.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Marruecos , Azúcares , Efectos Antropogénicos , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Emisiones de Vehículos/análisis , Estaciones del Año , Hidrocarburos Policíclicos Aromáticos/análisis
6.
Sci Total Environ ; 915: 170075, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232822

RESUMEN

An important challenge for studies of air pollution and health effects is the derivation of historical exposures. These generally entail some form of backcasting, which refers to a range of approaches that aim to project a current surface into the past. Accurate backcasting is conditional upon the availability of historical data for predictor variables and the ability to capture spatial and temporal trends in these variables. This study proposes a method to backcast traffic-related air pollution surfaces developed using land-use regression models by including temporal variability of traffic and emissions and trends in concentrations measured at reference stations. Nitrogen dioxide (NO2) concentrations collected in the City of Toronto using the Urban Scanner mobile platform were adjusted for historical trends captured at reference stations. The Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), a powerful tool for time series decomposition, was employed to isolate seasonal variations, annual trends, and abrupt changes in NO2 at reference stations, hence decomposing the signal. Exposure surfaces were generated for a period extending from 2006 to 2020, exhibiting decreases ranging from 10 to 50 % depending on the neighborhood, with an average of 20.46 % across the city. Yearly surfaces were intersected with mobility patterns of Torontonians extracted from travel survey data for 2006 and 2016, illustrating strong spatial gradients in the evolution of NO2 over time, with larger decreases along major roads and highways and in the central core. These findings demonstrate that air pollution improvements throughout the 14 years are inhomogeneous across space.

7.
Public Health ; 226: 152-156, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064778

RESUMEN

OBJECTIVES: Emissions from road traffic, power generation and industry were substantially reduced during pandemic lockdown periods globally. Thus, we analysed reductions in traffic-related air pollution in Australian capital cities during March-April 2020 and then modelled the mortality benefits that could be realised if similar reductions were sustained by structural policy interventions. STUDY DESIGN: Satellite, air pollution monitor and land use observations were used to estimate ground-level nitrogen dioxide (NO2) concentrations in all Australian capital cities during: (a) a typical year with no prolonged air pollution events; (b) a hypothetical sustained reduction in NO2 equivalent to the COVID-19 lockdowns. METHODS: We use the WHO recommended NO2 exposure-response coefficient for mortality (1.023, 95 % CI: 1.008-1.037, per 10 µg/m3 annual average) to assess gains in life expectancy and population-wide years of life from reduced exposure to traffic-related air pollution. RESULTS: We attribute 1.1 % of deaths to anthropogenic NO2 exposures in Australian cities, corresponding to a total of 13,340 years of life lost annually. Although COVID-19-related reductions in NO2 varied widely between Australian cities during April 2020, equivalent and sustained reductions in NO2 emissions could reduce NO2-attributable deaths by 27 %, resulting in 3348 years of life gained annually. CONCLUSIONS: COVID-19 mobility restrictions reduced NO2 emissions and population-wide exposures in Australian cities. When sustained to the same extent by policy interventions that reduce fossil fuel consumption by favouring the uptake of electric vehicles, active travel and public transport, the health, mortality and economic benefits will be measurable in Australian cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Ciudades , Emisiones de Vehículos , Dióxido de Nitrógeno/análisis , COVID-19/prevención & control , Australia/epidemiología , Control de Enfermedades Transmisibles , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos
8.
Sci Total Environ ; 905: 166986, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717749

RESUMEN

The air transport system is currently in a rapid development stage, accurate forecasting emissions is critical for identifying and mitigating its environmental impact. Accurate forecasting depends not only on temporal features from historical air traffic data but also on the influence of spatial factors. This paper proposes a deep learning-based forecasting framework for en route airspace emissions. It combines three-channel networks: a graph convolutional network, a gated recurrent unit, and the attention mechanism, in order to extract the spatial, temporal, and global temporal dynamics trends, respectively. The model is evaluated with real-world datasets, and the experimental results outperform existing state-of-the-art benchmarks on different evaluation metrics and forecasting horizons in complex airspace networks. Our method provides an alternative for forecasting air traffic emissions using publicly available traffic flow data. Furthermore, we propose an extension index that can be taken as an early warning indicator for stakeholders to monitor air traffic emissions.

9.
Sci Total Environ ; 905: 167038, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709087

RESUMEN

Ultrafine particles (UFP) with a diameter of ≤0.1 µm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 µm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.


Asunto(s)
Contaminantes Atmosféricos , Xenobióticos , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Mucosa Olfatoria/química
10.
Toxics ; 11(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624202

RESUMEN

Lifetime cancer risk characterization of ambient PM-bound carcinogenic metals and polycyclic aromatic hydrocarbons (PAHs) were examined in the cities of Los Angeles (USA), Thessaloniki (Greece) and Milan (Italy), which share similar Mediterranean climates but are different in their urban emission sources and governing air quality regulations. The samples in Milan and Thessaloniki were mostly dominated by biomass burning activities whereas the particles collected in Los Angeles were primary impacted by traffic emissions. We analyzed the ambient PM2.5 mass concentration of Cadmium (Cd), Hexavalent Chromium (Cr(VI)), Nickel (Ni), Lead (Pb), as well as 13 PAH compounds in the PM samples, collected during both cold and warm periods at each location. Pb exhibited the highest annual average concentration in all three cities, followed by Ni, As, Cr(VI), Cd and PAHs, respectively. The cancer risk assessment based on outdoor pollutants was performed based on three different scenarios, with each scenario corresponding to a different level of infiltration of outdoor pollutants into the indoor environment. Thessaloniki exhibited a high risk associated with lifetime inhalation of As, Cr(VI), and PAHs, with values in the range of (0.97-1.57) × 10-6, (1.80-2.91) × 10-6, and (0.77-1.25) × 10-6, respectively. The highest cancer risk values were calculated in Milan, exceeding the US EPA standard by a considerable margin, where the lifetime risk values of exposure to As, Cr(VI), and PAHs were in the range of (1.29-2.08) × 10-6, (6.08-9.82) × 10-6, and (1.10-1.77) × 10-6, respectively. In contrast, the estimated risks associated with PAHs and metals, except Cr(VI), in Los Angeles were extremely lower than the guideline value, even when the infiltration factor was assumed to be at peak. The lifetime cancer risk values associated with As, Cd, Ni, Pb, and PAHs in Los Angeles were in the range of (0.04-0.33) × 10-6. This observation highlights the impact of local air quality measures in improving the air quality and lowering the cancer risks in Los Angeles compared to the other two cities.

11.
Environ Int ; 179: 108152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37598595

RESUMEN

PM2.5 emissions from heavy-duty diesel trucks (HDDTs) have a significant impact on air quality, human health, and climate change, and seriously threaten the UN Sustainable Development Goals. Globally, a series of emission control measures have been implemented to reduce pollution emissions from HDDTs. Current studies assessing the impact of these measures on air quality and human health have mainly used coarse-grained emission data as input to dispersion model, resulting in the inability to capture the spatiotemporal variability of pollutant concentrations and tending to increase the uncertainty of health impact assessment results. In this study, we quantified the impact of pollution control policies for HDDTs in Beijing on PM2.5 concentrations, human health, and economic losses by integrating policy scenario analysis, pollution dispersion simulation, public health impact and economic benefit assessment models, supported by high spatiotemporal resolution emission data from HDDTs. The results show that PM2.5 concentrations from HDDTs exhibit significant spatial aggregation characteristics, with the intensity of aggregation at night being about twice as high as that during the day. The emission hotspots are mainly concentrated in the sixth, fifth and fourth rings and major highways. Compared to the "business as usual" scenario in 2018, the current policy of updating the fuel standard to China VI and the emission standard to China 6 can reduce PM2.5 concentrations by 96.72%, thereby avoiding 612 premature deaths, which is equivalent to obtaining economic benefits of 1.65 billion CNY. This study further emphasizes the importance of high spatiotemporal resolution emission data during traffic dispersion modeling. The results can help improve the understanding of the effectiveness of emission reduction measures for HDDTs from a health benefit perspective.


Asunto(s)
Vehículos a Motor , Políticas , Humanos , Beijing , China , Material Particulado
12.
Sci Total Environ ; 898: 165466, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451445

RESUMEN

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Polvo , Pulmón , Europa (Continente) , Tamaño de la Partícula
13.
Environ Res ; 234: 116601, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429395

RESUMEN

Transportation emissions significantly affect human health, air quality, and climate in urban areas. This study conducted experiments in an urban tunnel in Taipei, Taiwan, to characterize vehicle emissions under real driving conditions, providing emission factors of PM2.5, eBC, CO, and CO2. By applying multiple linear regression, it derives individual emission factors for heavy-duty vehicles (HDVs), light-duty vehicles (LDVs), and motorcycles (MCs). Additionally, the oxidative potential using dithiothreitol assay (OPDTT) was established to understand PM2.5 toxicity. Results showed HDVs dominated PM2.5 and eBC concentrations, while LDVs and MCs influenced CO and CO2 levels. The CO emission factor for transportation inside the tunnel was found to be higher than those in previous studies, likely owing to the increased fraction of MCs, which generally emit higher CO levels. Among the three vehicle types, HDVs exhibited the highest PM2.5 and eBC emission factors, while CO and CO2 levels were relatively higher for LDVs and MCs. The OPDTTm demonstrated that fresh traffic emissions were less toxic than aged aerosols, but higher OPDTTv indicated the impact on human health cannot be ignored. This study updates emission factors for various vehicle types, aiding in accurate assessment of transportation emissions' effects on air quality and human health, and providing a guideline for formulating mitigation strategies.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Humanos , Anciano , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Motocicletas , Dióxido de Carbono , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Estrés Oxidativo , Vehículos a Motor
14.
Sci Total Environ ; 889: 164380, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216994

RESUMEN

Metals emitted from brake linings wear have adverse effects on air quality and human health due to their toxicity and reactivity. However, complexities of factors affecting brake like conditions of vehicles and roads hinder the accurate quantification. Here, we established a comprehensive emission inventory for multi-metals from brake linings wear in China during 1980-2020, based on metals contents in well-representative samples, the wear of brake linings before replacement, vehicle populations, fleet composition, and vehicle-kilometers travelled (VKT). We show that with the boom of vehicle population, the total emissions of studied metals have surged from 3.7 × 106 g in 1980 to 4.9 × 1010 g in 2020, which mainly concentrated in coastal and eastern urban areas while grown significantly in the central and western urban areas in recent years. Therein, Ca, Fe, Mg, Al, Cu, and Ba were the top six metals emitted, together responsible for >94 % of the mass total. Jointly determined by brake linings especially metals contents thereof, VKTs, and vehicle populations, heavy-duty trucks, light-duty passenger vehicles, and heavy-duty passenger vehicles were the top three contributors in metals emissions, together accounting about 90 % of the total. Moreover, more precise description on real-world metals emissions from brake linings wear are still urgently needed, considering the increasingly significant role it has been playing on worsening air quality and public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Metales/análisis , Contaminación del Aire/análisis , China , Vehículos a Motor , Excipientes , Monitoreo del Ambiente
15.
Environ Res ; 217: 114833, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36402182

RESUMEN

Diabetes mellitus (DM) incidence have been assessed in connection with air pollution exposure in several studies; however, few have investigated associations with source-specific local emissions. This study aims to estimate the risk of DM incidence associated with source-specific air pollution in a Swedish cohort with relatively low exposure. Individuals in the Västerbotten intervention programme cohort were followed until either a DM diagnosis or initiation of treatment with glucose-lowering medication occurred. Dispersion models with high spatial resolution were used to estimate annual mean concentrations of particulate matter (PM) with aerodynamic diameter ≤10 µm (PM10) and ≤2.5 µm (PM2.5) at individual addresses. Hazard ratios were estimated using Cox regression models in relation to moving averages 1-5 years preceding the outcome. During the study period, 1479 incident cases of DM were observed during 261,703 person-years of follow-up. Increased incidence of DM was observed in association with PM10 (4% [95% CI: -54-137%] per 10 µg/m3), PM10-traffic (2% [95% CI: -6-11%] per 1 µg/m3) and PM2.5-exhaust (11% [95% CI: -39-103%] per 1 µg/m3). A negative association was found for both PM2.5 (-18% [95% CI: -99-66%] per 5 µg/m3), but only in the 2nd exposure tertile (-10% [95% CI: -25-9%] compared to the first tertile), and PM2.5-woodburning (-30% [95% CI: -49-4%] per 1 µg/m3). In two-pollutant models including PM2.5-woodburning, there was an 11% [95% CI: -11-38%], 6% [95% CI: -16-34%], 13% [95% CI: -7-36%] and 17% [95% CI: 4-41%] higher risk in the 3rd tertile of PM10, PM2.5, PM10-traffic and PM2.5-exhaust, respectively, compared to the 1st. Although the results lacked in precision they are generally in line with the current evidence detailing particulate matter air pollution from traffic as an environmental risk factor for DM.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Mellitus , Humanos , Material Particulado/análisis , Estudios de Cohortes , Suecia/epidemiología , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Incidencia , Exposición a Riesgos Ambientales , Emisiones de Vehículos/análisis , Diabetes Mellitus/epidemiología
16.
Sci Total Environ ; 854: 158753, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108863

RESUMEN

Heavy-duty diesel trucks (HDDTs) cause serious pollution to urban and regional environment. Understanding the spatiotemporal pattern of pollution emissions and its impact factors is the basis for implementing emission reduction measures. However, since the multiscale emission inventory of HDDTs is not currently established, multiscale analysis of these issues is still lacking. Therefore, this study uses massive trajectory data, detailed vehicle specification information and road network information, combined with localized emission factors, to construct a multiscale NOx emission inventory of HDDTs with high spatiotemporal resolution in the Beijing-Tianjin-Hebei region. Then the multiscale spatiotemporal variations of NOx emissions are analyzed by using spatial statistical indicators and multiscale geographical weighted regression model. The results show that the NOx emissions of HDDTs show different spatiotemporal distribution and aggregation characteristics at different scales. Specifically, link-scale emissions are concentrated to a few highways and are dominated by Low-Low cluster. While county-scale and city-scale emissions are concentrated in the eastern plains, mainly in High-High and Low-Low clusters. There are spatial heterogeneity and multiscale effects of socioeconomic and road attribute characteristics on the NOx emissions from HDDTs. Population density, urbanization rate, proportion of second industry, and proportion of highway affect the NOx emissions of HDDTs globally, while per capita GDP and road density have local effects. Our results extend the scientific understanding of the multiscale spatiotemporal variations of HDDTs and may provide a scientific basis for the development of targeted emission control measures for HDDTs.

17.
Environ Sci Technol ; 57(1): 96-108, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548159

RESUMEN

We performed more than a year of mobile, 1 Hz measurements of lung-deposited surface area (LDSA, the surface area of 20-400 nm diameter particles, deposited in alveolar regions of lungs) and optically assessed fine particulate matter (PM2.5), black carbon (BC), and nitrogen dioxide (NO2) in central London. We spatially correlated these pollutants to two urban emission sources: major roadways and restaurants. We show that optical PM2.5 is an ineffective indicator of tailpipe emissions on major roadways, where we do observe statistically higher LDSA, BC, and NO2. Additionally, we find pollutant hot spots in commercial neighborhoods with more restaurants. A low LDSA (15 µm2 cm-3) occurs in areas with fewer major roadways and restaurants, while the highest LDSA (25 µm2 cm-3) occurs in areas with more of both sources. By isolating areas that are higher in one source than the other, we demonstrate the comparable impacts of traffic and restaurants on LDSA. Ratios of hyperlocal enhancements (ΔLDSA:ΔBC and ΔLDSA:ΔNO2) are higher in commercial neighborhoods than on major roadways, further demonstrating the influence of restaurant emissions on LDSA. We demonstrate the added value of using particle surface in identifying hyperlocal patterns of health-relevant PM components, especially in areas with strong vehicular emissions where the high LDSA does not translate to high PM2.5.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Londres , Emisiones de Vehículos/análisis , Pulmón , Monitoreo del Ambiente , Contaminación del Aire/análisis
18.
J Environ Sci (China) ; 124: 745-757, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182179

RESUMEN

Air pollution is a major obstacle to future sustainability, and traffic pollution has become a large drag on the sustainable developments of future metropolises. Here, combined with the large volume of real-time monitoring data, we propose a deep learning model, iDeepAir, to predict surface-level PM2.5 concentration in Shanghai megacity and link with MEIC emission inventory creatively to decipher urban traffic impacts on air quality. Our model exhibits high-fidelity in reproducing pollutant concentrations and reduces the MAE from 25.355 µg/m3 to 12.283 µg/m3 compared with other models. And identifies the ranking of major factors, local meteorological conditions have become a nonnegligible factor. Layer-wise relevance propagation (LRP) is used here to enhance the interpretability of the model and we visualize and analyze the reasons for the different correlation between traffic density and PM2.5 concentration in various regions of Shanghai. Meanwhile, As the strict and effective industrial emission reduction measurements implementing in China, the contribution of urban traffic to PM2.5 formation calculated by combining MEIC emission inventory and LRP is gradually increasing from 18.03% in 2011 to 24.37% in 2017 in Shanghai, and the impact of traffic emissions would be ever-prominent in 2030 according to our prediction. We also infer that the promotion of vehicular electrification would achieve further alleviation of PM2.5 about 8.45% by 2030 gradually. These insights are of great significance to provide the decision-making basis for accurate and high-efficient traffic management and urban pollution control, and eventually benefit people's lives and high-quality sustainable developments of cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aprendizaje Profundo , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ciudades , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Emisiones de Vehículos/análisis
19.
Front Psychol ; 14: 1341611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348110

RESUMEN

Based on the development of the concept of a resource-saving and environmentally friendly society, needing to develop low-carbon and sustainable urban transportation. Most of the pollutants come from the emissions of motor vehicle exhaust. Therefore, this paper analyzes the relationship between driving behavior and traffic emissions, to constrain driver behavior to reduce pollutant emissions. The GPS data are preprocessed by using Navicat for data integration, data screening, data sorting, etc., and then, the speed data are cleaned by using a combination of box-and-line plots and linear interpolation in SPSS. Second, this paper uses principal component analysis (PCA) to downsize 12 indicators such as average speed, average acceleration, and maximum speed and then adopts K-MEANS and K-MEDOIDS methods to cluster the driver's behavioral indicators, selects the aggregation method based on the clustering indexes optimally, and analyzes the driver's driving state by using the symbolic approximation aggregation method; finally, according to the above research results and combined with the MOVES traffic emission model to analyze the relationship between the driver's driving mode, driving state, and traffic emissions, the decision tree can be used to predict the unknown driving mode of the driver to estimate the degree of its emissions.

20.
Environ Sci Technol ; 56(23): 16621-16632, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36417703

RESUMEN

Disparities in exposure to traffic-related air pollution have been widely reported. However, little work has been done to simultaneously assess the impact of various vehicle types on populations of different socioeconomic/ethnic backgrounds. In this study, we employed an extreme gradient-boosting approach to spatially distribute light-duty vehicle (LDV) and heavy-duty truck emissions across the city of Toronto from 2006 to 2020. We examined associations between these emissions and different marginalization indices across this time span. Despite a large decrease in traffic emissions, disparities in exposure to traffic-related air pollution persisted over time. Populations with high residential instability, high ethnic concentration, and high material deprivation were found to reside in regions with significantly higher truck and LDV emissions. In fact, the gap in exposure to traffic emissions between the most residentially unstable populations and the least residentially unstable populations worsened over time, with trucks being the larger contributor to these disparities. Our data also indicate that the number of trucks and truck emissions increased substantially between 2019 and 2020 whilst LDVs decreased. Our results suggest that improvements in vehicle emission technologies are not sufficient to tackle disparities in exposure to traffic-related air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Vehículos a Motor , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA