Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 129: 105171, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276638

RESUMEN

OBJECTIVES: This study investigates the simulation of the mechanical behavior of a bioceramic composite based on (Ce,Y)-TZP reinforced with equiaxed Al2O3 and platelet-shaped hexaaluminate (H6A) grains using Finit Element Method (FEM). METHODS: A commercial (Ce, Y)-TZP/Al2O3 ceramic powder was compacted into disc-shaped specimens that were sintered at 1500 °C for 2 h. The sintered samples were further subjected to hydrothermal degradation in an autoclave at 134 °C, 0.2 MPa, for 10 h and characterized according to their phase composition, microstructure, and relative density. Their flexural strength values were determined by the piston-on-three-ball test, and Weibull statistics was used to evaluate the results. Their hardness, fracture toughness and elastic parameters were also measured. Numerical simulations of the biaxial strength test were performed using the ABAQUS finite element code. RESULTS: The sintered ceramic composite material presented relative density >99%, high resistance to hydrothermal degradation, average hardness of 1435 ± 35 HV, fracture toughness KIC of 9.7 ± 0.5 MPa m1/2, and average biaxial flexural strength of 952.6 ± 88 MPa. The numerical predictions of the biaxial flexural strength showed a consistently lower average biaxial flexural strength value of 880.9 MPa, ∼10% lower than the average experimental results. CONCLUSIONS: The differences observed are attributed to the complex coupled toughness mechanisms of this material, not included in the finite element simulations.


Asunto(s)
Cerámica , Circonio , Materiales Dentales , Resistencia Flexional , Ensayo de Materiales , Propiedades de Superficie , Itrio/química , Circonio/química
2.
J Mech Behav Biomed Mater ; 116: 104306, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33513460

RESUMEN

Brazil nut (Bertholletia excelsa) fruits are capable of resisting high mechanical forces when released from trees as tall as 50 m, as well as during animal dispersal by sharp-teethed rodents. Thick mesocarp plays a crucial part in seed protection. We investigated the role of microstructure and how sclereids, fibers, and voids affect nutshell performance using compression, tensile and fracture toughness tests. Fractured specimens were analyzed through scanning electron microscopy (SEM) and microtomography (microCT). Mesocarp showed high deformability (strain at max. stress of ~30%) under compression loading, a critical tensile strength of ~24.9 MPa, a Weibull modulus of ~3, and an elastic modulus of ~2 GPa in the tensile test. The fracture toughness, estimated through the work of fracture of SENB tests, reached ~2 kJ/m2. The thick and strong walls of mesocarp cells, with a weaker boundary between them (compound middle lamella), promote a tortuous intercellular crack path. Several toughening mechanisms, such as crack deflection, breaking of fiber bundles, fiber pullout and bridging as well as crack branching, occur depending on how fiber bundles and voids are oriented.


Asunto(s)
Bertholletia , Animales , Módulo de Elasticidad , Frutas , Microscopía Electrónica de Rastreo , Semillas , Estrés Mecánico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA