Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(46)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39142323

RESUMEN

We examine a class of Hamiltonians characterized by interatomic, interorbital even-odd parity hybridization as a model for a family of topological insulators without the need for spin-orbit coupling. Non-trivial properties of these materials are exemplified by studying the topologically-protected edge states ofs-phybridized alkali and alkaline earth atoms in one and two-dimensional lattices. In 1D the topological features are analogous to the canonical Su-Schrieffer-Heeger model but, remarkably, occur in the absence of dimerization. Alkaline earth chains, with Be standing out due to its gap size and near particle-hole symmetry, are of particular experimental interest since their Fermi energy without doping lies directly at the level of topological edge states. Similar physics is demonstrated to occur in a 2D honeycomb lattice system ofs-pbonded atoms, where dispersive edge states emerge. Lighter elements are predicted using this model to host topological states in contrast to spin-orbit coupling-induced band inversion favoring heavier atoms.

2.
Natl Sci Rev ; 11(8): nwae116, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39007007

RESUMEN

Flexible multiplexing chips that permit reconfigurable multidimensional channel utilization are indispensable for revolutionary 6G terahertz communications, but the insufficient manipulation capability of terahertz waves prevents their practical implementation. Herein, we propose the first experimental demonstration of a flexible multiplexing chip for terahertz communication by revealing the unique mechanism of topological phase (TP) transition and perseveration in a heterogeneously coupled bilayer valley Hall topological photonic system. The synthetic and individual TPs operated in the coupled and decoupled states enable controllable on-chip modular TP transitions and subchannel switching. Two time-frequency interleaved subchannels support 10- and 12-Gbit/s QAM-16 high-speed data streams along corresponding paths over carriers of 120 and 130 GHz with 2.5- and 3-GHz bandwidths, respectively. This work unlocks interlayer heterogeneous TPs for inspiring ingenious on-chip terahertz-wave regulation, allowing functionality-reconfigurable, compactly integrated and CMOS-compatible chips.

3.
Adv Mater ; 36(29): e2312072, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734889

RESUMEN

Non-trivial topological structures, such as vortex-antivortex (V-AV) pairs, have garnered significant attention in the field of condensed matter physics. However, the detailed topological phase transition dynamics of V-AV pairs, encompassing behaviors like self-annihilation, motion, and dissociation, have remained elusive in real space. Here, polar V-AV pairs are employed as a model system, and their transition pathways are tracked with atomic-scale resolution, facilitated by in situ (scanning) transmission electron microscopy and phase field simulations. This investigation reveals that polar vortices and antivortices can stably coexist as bound pairs at room temperature, and their polarization decreases with heating. No dissociation behavior is observed between the V-AV phase at room temperature and the paraelectric phase at high temperature. However, the application of electric fields can promote the approach of vortex and antivortex cores, ultimately leading to their annihilation near the interface. Revealing the transition process mediated by polar V-AV pairs at the atomic scale, particularly the role of polar antivortex, provides new insights into understanding the topological phases of matter and their topological phase transitions. Moreover, the detailed exploration of the dynamics of polar V-AV pairs under thermal and electrical fields lays a solid foundation for their potential applications in electronic devices.

4.
J Phys Condens Matter ; 36(26)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572591

RESUMEN

Topological phase transitions in band models are usually associated to the gap closing between the highest valance band and the lowest conduction band, which can give rise to different types of nodal structures, such as Dirac/Weyl points, lines and surfaces. In this work, we show the existence of a different kind of topological phase transitions in one-dimensional systems, which are instead characterized by the presence of a robust zero indirect gap, which occurs when the top of the valence band coincides with the bottom of the conduction band in energy but not in momentum. More specifically, we consider an one-dimensional model on a trimer chain that is protected by both particle-hole and chiral-inversion symmetries. At the critical point, the system supports a Dirac-like point. After introducing a deforming parameter that breaks both inversion and chiral symmetries but preserves their combination, we observe the emergence of a zero indirect band gap, which results to be related to thepersymmetryof our Hamiltonian. Importantly, the zero indirect gap holds for a range of values of the deforming parameter. We finally discuss the implementation of the deforming parameter in our tight-binding model through time-periodic (Floquet) driving.

5.
Phys Life Rev ; 48: 47-98, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145591

RESUMEN

Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.


Asunto(s)
Encéfalo , Neurociencias , Encéfalo/fisiología , Neurofisiología , Física
6.
J Phys Condens Matter ; 36(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061072

RESUMEN

The Mn-Bi-Te family displaying magnetism and non-trivial topological properties has received extensive attention. Here, we predict that the antiferromagnetic structure of Mn3Bi2Te6with three MnTe layers is energetically stable and the magnetic energy difference of Mn-Mn is enhanced four times compared with that in the single MnTe layer of MnBi2Te4. The predicted Néel transition point is raised to 102.5 K, surpassing the temperature of liquid nitrogen. The topological properties show that with the variation of the MnTe layer from a single layer to three layers, the system transforms from a non-trivial topological phase to a trivial topological phase. Interestingly, the ferromagnetic state of Mn3Bi2Te6is a topological semimetal and it exhibits a topological transition from trivial to non-trivial induced by the magnetic transition. Our results enrich the Mn-Bi-Te family system, offer a new platform for studying topological phase transitions, and pave a new way to improve the working temperature of magnetically topological devices.

7.
J Phys Condens Matter ; 36(3)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37774718

RESUMEN

We construct an islamic lattice by considering the nearest-neighbor (NN) hoppings with staggered magnetic fluxes and the next-NN hoppings. This model supports abundant quantum phases for various values of filling fractions. At1/4filling, Chern insulator (CI) phases with Chern numbersC=±1, -2and a zero-Chern-number topological insulator (ZCNTI) phase exist. At3/8filling, several CI phases with Chern numbersC=±1, 3and the ZCNTI phase are obtained. For the filling fraction 3/4, CI phases with Chern numbersC=±1, 2and two ZCNTI phase areas appear. Interestingly, these ZCNTI phases host both robust corner states and gapless edge states which can be characterized by the quantized polarization and quadrupole moment. We further find that staggered magnetic fluxes can give rise to the ZCNTI state at1/4and3/4fillings. Phase diagrams for filling fractions1/8,1/2,5/8and7/8are presented as well. In addition, flat bands are obtained for various filling fractions by tuning the hopping parameters. At 1/8 filling, a best topological flat band (TFB) with flatness ratio about 12 appears. Several trivial flat bands but with total Chern number|C|=1emerge in this model and exactly flat band is found at 3/8 filling. We further investigateν=1/2fractional Chern insulate state when hard-core bosons fill into this TFB model.

8.
J Phys Condens Matter ; 35(42)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37429289

RESUMEN

The growing skill in the synthesis processes of new materials has intensified the interest in exploring the properties of systems modeled by more complex lattices. Two-dimensional super-honeycomb lattices, have been investigated in metallic organic frameworks. They turned out as a significant route to the emergence of localized electronic responses manifested as flat bands in their structure with topological isolating behavior. A natural inquiry is a complete analysis of their topological phases in the presence of electronic correlation effects. Here we analyze the electron-electron correlation effects via Hubbard mean-field approximation on the topological phases of 2D and quasi-1D graphene-Kagome lattices. The 2D spin conductivity phase's diagrams describe metallic, trivial, and topological insulating behaviors, considering different energy coupling and electronic occupations. Our results pave the way to smart-engineered nanostructured devices with relevant applications in spintronics and transport responses.

9.
Adv Mater ; 35(11): e2207622, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36538624

RESUMEN

Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb)2 Te3 . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.

10.
J Phys Condens Matter ; 34(22)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35134789

RESUMEN

In this work, we investigate the topological phase transitions in an effective model for a topological thin film with high-frequency pumping. In particular, our results show that the circularly polarized light can break the time-reversal symmetry and induce the quantum anomalous Hall insulator (QAHI) phase. Meanwhile, the bulk magnetic moment can also break the time-reversal symmetry. Therefore, it shows rich phase diagram by tuning the intensity of the light and the thickness of the thin film. Using the parameters fitted by experimental data, we give the topological phase diagram of the Cr-doped Bi2Se3thin film, showing that by modulating the strength of the polarized optical field in an experimentally accessible range, there are four different phases: the normal insulator phase, the time-reversal-symmetry-broken quantum spin Hall insulator phase, and two different QAHI phases with opposite Chern numbers. Comparing with the non-doped Bi2Se3, it is found that the interplay between the light and bulk magnetic moment separates the two different QAHI phases with opposite Chern numbers. The results show that an intrinsic magnetic topological insulator with high-frequency pumping is an ideal platform for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.

11.
J Phys Condens Matter ; 34(17)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081520

RESUMEN

In this work I demonstrate how to characterize topological phase transitions in BDI symmetry class superconductors (SCs) in 1D, using the recently introduced approach of Berry singularity markers (BSMs). In particular, I apply the BSM method to the celebrated Kitaev chain model, as well as to a variant of it, which contains both nearest and next nearest neighbor equal spin pairings. Depending on the situation, I identify pairs of external fields which can detect the topological charges of the Berry singularities which are responsible for the various topological phase transitions. These pairs of fields consist of either a flux knob which controls the supercurrent flow through the SC, or, strain, combined with a field which can tune the chemical potential of the system. Employing the present BSM approach appears to be within experimental reach for topological nanowire hybrids.

12.
Adv Mater ; 34(11): e2106401, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34958699

RESUMEN

Understanding the phase transitions and domain evolutions of mesoscale topological structures in ferroic materials is critical to realizing their potential applications in next-generation high-performance storage devices. Here, the behaviors of a mesoscale supercrystal are studied with 3D nanoscale periodicity and rotational topology phases in a PbTiO3 /SrTiO3 (PTO/STO) superlattice under thermal and electrical stimuli using a combination of phase-field simulations and X-ray diffraction experiments. A phase diagram of temperature versus polar state is constructed, showing the formation of the supercrystal from a mixed vortex and a-twin state and a temperature-dependent erasing process of a supercrystal returning to a classical a-twin structure. Under an in-plane electric field bias at room temperature, the vortex topology of the supercrystal irreversibly transforms to a new type of stripe-like supercrystal. Under an out-of-plane electric field, the vortices inside the supercrystal undergo a topological phase transition to polar skyrmions. These results demonstrate the potential for the on-demand manipulation of polar topology and transformations in supercrystals using electric fields. The findings provide a theoretical understanding that may be utilized to guide the design and control of mesoscale polar structures and to explore novel polar structures in other systems and their topological nature.

13.
J Phys Condens Matter ; 33(22)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33618334

RESUMEN

Nodal line semimetals (NLSM) exhibit interesting quantum oscillation (QO) characteristics when acted upon by a strong magnetic field. We study the combined effect of strong direct and alternating magnetic field, perpendicular to the nodal plane in an untilted NLSM in order to probe the behavior of the low lying Landau level states that can periodically become gapless for suitably chosen field parameters. The oscillatory field variation, as opposed to a steady one, has interesting impact on the QO phenomena with the Landau tubes crossing the Fermi surface extremally two times per cycle. Furthermore, the low energy modes can witness Landau-Zener like transitions between valence and conduction band providing further routes to conduction. We discuss such transition phenomena following the framework of adiabatic-impulse approximation for slow quenches. Next we also investigate the effect of oscillating magnetic field acting parallel to the nodal loop where topologically nontrivial magnetic oscillations at low energies can be witnessed. Therefore, with proper parameters chosen, one can engineer topological transitions to occur periodically in such systems as the oscillating field is swept through its cycles.

14.
Physica A ; 568: 125752, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33456130

RESUMEN

The evolution of the COVID-19 disease is monitored on the basis of the daily number of infected patients and the daily number of deaths provided from national health agencies. The variation of such parameters with time parallels that described for the growth/decay of historic transportation systems revealing the appearance of discontinuities. The evolution of the pandemic disease is represented in terms of two nominally equivalent formulations: a logistic model with sharp changes in its rate parameters, and in topological terms resulting in 2nd order phase transitions in the infected patients/time space.

15.
Sci Bull (Beijing) ; 66(12): 1168-1175, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36654354

RESUMEN

Higher-order topological phases give rise to new bulk and boundary physics, as well as new classes of topological phase transitions. While the realization of higher-order topological phases has been confirmed in many platforms by detecting the existence of gapless boundary modes, a direct determination of the higher-order topology and related topological phase transitions through the bulk in experiments has still been lacking. To bridge the gap, in this work we carry out the simulation of a two-dimensional second-order topological phase in a superconducting qubit. Owing to the great flexibility and controllability of the quantum simulator, we observe the realization of higher-order topology directly through the measurement of the pseudo-spin texture in momentum space of the bulk for the first time, in sharp contrast to previous experiments based on the detection of gapless boundary modes in real space. Also through the measurement of the evolution of pseudo-spin texture with parameters, we further observe novel topological phase transitions from the second-order topological phase to the trivial phase, as well as to the first-order topological phase with nonzero Chern number. Our work sheds new light on the study of higher-order topological phases and topological phase transitions.

16.
Front Optoelectron ; 13(1): 50-72, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36641586

RESUMEN

The field of topological photonic crystals has attracted growing interest since the inception of optical analog of quantum Hall effect proposed in 2008. Photonic band structures embraced topological phases of matter, have spawned a novel platform for studying topological phase transitions and designing topological optical devices. Here, we present a brief review of topological photonic crystals based on different material platforms, including all-dielectric systems, metallic materials, optical resonators, coupled waveguide systems, and other platforms. Furthermore, this review summarizes recent progress on topological photonic crystals, such as higherorder topological photonic crystals, non-Hermitian photonic crystals, and nonlinear photonic crystals. These studies indicate that topological photonic crystals as versatile platforms have enormous potential applications in maneuvering the flow of light.

17.
Nano Lett ; 17(11): 7003-7008, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29058917

RESUMEN

Spin-orbit interaction (SOI) that is gate-tunable over a broad range is essential to exploiting novel spin phenomena. Achieving this regime has remained elusive because of the weakness of the underlying relativistic coupling and lack of its tunability in solids. Here we outline a general strategy that enables exceptionally high tunability of SOI through creating a which-layer spin-orbit field inhomogeneity in graphene multilayers. An external transverse electric field is applied to shift carriers between the layers with strong and weak SOI. Because graphene layers are separated by subnanometer scales, exceptionally high tunability of SOI can be achieved through a minute carrier displacement. A detailed analysis of the experimentally relevant case of bilayer graphene on a semiconducting transition metal dichalchogenide substrate is presented. In this system, a complete tunability of SOI amounting to its ON/OFF switching can be achieved. New opportunities for spin control are exemplified with electrically driven spin resonance and topological phases with different quantized intrinsic valley Hall conductivities.

18.
Adv Mater ; 29(25)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370556

RESUMEN

Bithmuth tellurohalides BiTeX (X = Cl, Br and I) are model examples of bulk Rashba semiconductors, exhibiting a giant Rashba-type spin splitting among their both valence and conduction bands. Extensive spectroscopic and transport experiments combined with the state-of-the-art first-principles calculations have revealed many unique quantum phenomena emerging from the bulk Rashba effect in these systems. The novel features such as the exotic inter- and intra-band optical transitions, enhanced magneto-optical response, divergent orbital dia-/para-magnetic susceptibility and helical spin textures with a nontrivial Berry's phase in the momentum space are among the salient discoveries, all arising from this effect. Also, it is theoretically proposed and indications have been experimentally reported that bulk Rashba semiconductors such as BiTeI have the capability of becoming a topological insulator under the application of a hydrostatic pressure. Here, we overview these studies and show that BiTeX are an ideal platform to explore the next aspects of quantum matter, which could ultimately be utilized to create spintronic devices with novel functionalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA