Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 98(8): 2069-2080, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28464251

RESUMEN

Predators that forage at boundaries between ecosystems can affect prey from adjacent ecosystems, thereby triggering consumptive and non-consumptive cascading effects, which may affect diversity and food web structure across ecosystems. In the present study, we manipulated the access of insectivorous birds, lizards, and anurans to tank bromeliads in scrub vegetation in southern Brazil. We measured cascading effects on the community structure of aquatic invertebrates inhabiting bromeliad leaves and on the ecosystem processes of decomposition rate and bromeliad growth. The exclusion of terrestrial vertebrate predators increased the biomass of Odonate and Tabanid apex predators, which shifted the body size structure of the assemblage and generated inverted biomass pyramids that were top-heavy. Within bromeliads with larger aquatic predators, the species composition and abundance of other aquatic invertebrates also changed, resulting in higher abundance of mesopredators and scrapers, and lower abundance of shredders. Under those conditions, the detritus decomposition rate decreased, and bromeliads produced more leaves, perhaps because of the higher deposition of nitrogenous waste by mesopredators. Our results highlight that the effects of terrestrial vertebrate predators can propagate across aquatic ecosystems, altering species composition, body size structure, food web organization, and ecosystem function.


Asunto(s)
Organismos Acuáticos , Ecosistema , Cadena Alimentaria , Vertebrados/fisiología , Animales , Brasil , Invertebrados , Conducta Predatoria
2.
Am Nat ; 189(5): 490-500, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28410025

RESUMEN

Predators control prey populations and influence communities and the functioning of ecosystems through a combination of consumptive and nonconsumptive effects. These effects can be locally confined to one ecosystem but can also be extended to neighboring ecosystems. In this study, we investigated the nonconsumptive effects of terrestrial avian predators on the communities of aquatic invertebrates inhabiting bromeliads and on the functioning of these natural ecosystems. Bromeliads with stuffed birds placed nearby showed a decrease in aquatic damselfly larvae abundance and biomass, and we can infer that these changes were caused by antipredator responses. These larvae, which are top predators in bromeliad ecosystems, changed the composition of the entire aquatic invertebrate community. While total species richness, mesopredator richness, and shredder abundance increased in the presence of birds, scraper biomass decreased, possibly as a consequence of the increase in mesopredator richness. High scraper biomass in the absence of birds may have accelerated detrital decomposition, making more nutrients available for bromeliads, which grew more. These results show that nonconsumptive effects triggered by terrestrial predators can cascade down to lower trophic levels and dramatically affect the functioning of aquatic ecosystems, which can in turn alter nutrient provision to terrestrial ecosystems.


Asunto(s)
Aves/fisiología , Ecosistema , Cadena Alimentaria , Invertebrados/fisiología , Conducta Predatoria , Animales , Organismos Acuáticos , Brasil , Bromeliaceae , Miedo , Invertebrados/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Dinámica Poblacional
3.
Ecology ; 98(4): 961-970, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28112395

RESUMEN

Both bottom-up (e.g., nutrients) and top-down (e.g., herbivory) forces structure plant communities, but it remains unclear how they affect the relative importance of stochastic and deterministic processes in plant community assembly. Moreover, different-sized herbivores have been shown to have contrasting effects on community structure and function, but their effects on the processes governing community assembly (i.e., how they generate the impacts on structure) remain largely unknown. We evaluated the influence of bottom-up and top-down forces on the relative importance of deterministic and stochastic processes during plant community assembly. We used the data of a 7-yr factorial experiment manipulating nutrient availability (ambient and increased) and the presence of vertebrate herbivores (>1 kg) of different body size in a floodplain grassland in The Netherlands. We used a null model that describes a community composition expected by chance (i.e., stochastic assembly) and compared the plant community composition in the different treatments with this null model (the larger the difference, the more deterministically assembled). Our results showed that herbivore exclusion promoted a more stochastic plant community assembly, whereas increased nutrients played a relatively minor role in determining the relative importance of stochasticity in community assembly. Large herbivores facilitated intermediate-sized mammal herbivores, resulting in synergistic effects of enhanced grazing pressure and a more deterministic and convergent plant community assembly. We conclude that herbivores can act as strong deterministic forces during community assembly in natural systems. Our results also reveal that although large- and intermediate-sized mammal herbivores often have contrasting effects on many community and ecosystem properties, they can also synergistically homogenize plant communities.


Asunto(s)
Biodiversidad , Pradera , Herbivoria , Plantas/clasificación , Animales , Ecosistema , Países Bajos
4.
Ecology ; 97(7): 1650-1657, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27859165

RESUMEN

An open question in the evolutionary ecology of ant-plant facultative mutualism is how other members of the associated community can affect the interaction to a point where reciprocal benefits are disrupted. While visiting Qualea grandiflora shrubs to collect sugary rewards at extrafloral nectaries, tropical savanna ants deter herbivores and reduce leaf damage. Here we show that larvae of the fly Rhinoleucophenga myrmecophaga, which develop on extrafloral nectaries, lure potentially mutualistic, nectar-feeding ants and prey on them. Foraging ants spend less time on fly-infested foliage. Field experiments showed that predation (or the threat of predation) on ants by fly larvae produces cascading effects through three trophic levels, resulting in fewer protective ants on leaves, increased numbers of chewing herbivores, and greater leaf damage. These results reveal an undocumented mode of mutualism exploitation by an opportunistic predator at a plant-provided food source, jeopardizing ant-derived protection services to the plant. Our study documents a rather unusual case of predation of adult ants by a dipteran species and demonstrates a top-down trophic cascade within a generalized ant-plant mutualism.


Asunto(s)
Hormigas/fisiología , Drosophilidae/fisiología , Simbiosis , Animales , Larva , Plantas
5.
Ecology ; 89(11): 3105-3115, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31766796

RESUMEN

Although specific associations between spiders and particular types of plants have been reported for several taxonomic groups, their consequences for spiders and plants are still poorly understood. The most common South American lynx spiders, Peucetia flava and P. rubrolineata, live strictly associated with various plant species that have glandular trichomes. To understand more about these spider-plant relationships, we investigated the influence of the spiders on the fitness of a neotropical glandular shrub (Trichogoniopsis adenantha) and on the arthropod community structure on the plant. We also tested whether glandular hairs provided any benefit to the spiders. Spiders reduced the abundance of several species and guilds of herbivores on the leaves and inflorescences. Consequently, damage to the leaves, capitula, ovaries, corollas, and stigmas caused by leaf-mining and chewing insects, as well as endophagous insects, were strongly reduced in the presence of Peucetia spp. Although the spiders fed on flower visitors, their negative influence on ovary fertilization was only marginally nonsignificant (P = 0.065). Spiders on plants of Trichogoniopsis adenantha that fed on common fruit flies that had died before adhering to the glandular trichomes did not lose body mass. However, those living on plants without stalked glandular trichomes (Melissa officinalis) did not feed on dead flies and lost 13-20% of their biomass. These results indicate that Peucetia spiders are effective plant bodyguards and that when there is limited live prey they may feed on insect carcasses adhered to glandular trichomes. Since several spider species of the genus Peucetia live strictly associated with glandular trichome-bearing plants in neotropical, Neartic, Paleartic, and Afrotropical regions, this type of facultative mutualism involving Peucetia and glandular plants may be common worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA