Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Heliyon ; 10(16): e36170, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224351

RESUMEN

To address rotor imbalance and misalignment in oil transfer pumps, an innovative diagnostic framework using Residual Network (ResNet) is proposed. The model incorporates advanced signal processing algorithms and strategic sensor placement to enhance diagnostic efficacy. A fault simulation test rig captured vibration signals from eight key measurement points on the pump. One-dimensional and multi-dimensional signal processing techniques generated comprehensive datasets for training and validating the model. Sensor placement optimization, focusing on the bearing seat's axial direction, inlet flange's vertical direction, and outlet flange's axial direction, increased rotor fault sensitivity. Time-frequency data processed via Short-Time Fourier Transform (STFT) achieved the highest diagnostic accuracy, surpassing 98 %. This study highlights the importance of optimal signal processing and precise sensor placement in improving the accuracy of diagnosing rotor faults in oil transfer pumps, thus enhancing the operational reliability and efficiency of energy transportation systems.

2.
ISA Trans ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39261267

RESUMEN

Nonstationary fault signals collected from wind turbine planetary gearboxes and bearings often exhibit close-spaced instantaneous frequencies (IFs), or even crossed IFs, bringing challenges for existing time-frequency analysis (TFA) methods. To address the issue, a data-driven TFA technique, termed CTNet is developed. The CTNet is a novel model that combines a fully convolutional auto-encoder network with the convolutional block attention module (CBAM). In the CTNet, the encoder layer is first designed to extract coarse features of the time-frequency representation (TFR) calculated by the general linear Chirplet transform (GLCT); second, the decoder layer is combined to restore and conserve details of the key time-frequency features; third, the skip connections are designed to accelerate training by linking extracted and reconstructed features; finally, the CBAM is introduced to adaptively explore channel and spatial relationships of the TFR, focusing more on close-spaced or crossed frequency features, and effectively reconstruct the TFR. The effectiveness of the CTNet is validated by numerical signals with close-spaced or crossed IFs, and real-world signals of wind turbine planetary gearbox and bearings. Comparison analysis with state-of-the-art TFA methods shows that the CTNet has high time-frequency resolution in characterizing nonstationary signals and a much better ability to detect wind turbine faults.

3.
bioRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39149403

RESUMEN

Neurophysiological brain activity comprises rhythmic (periodic) and arrhythmic (aperiodic) signal elements, which are increasingly studied in relation to behavioral traits and clinical symptoms. Current methods for spectral parameterization of neural recordings rely on user-dependent parameter selection, which challenges the replicability and robustness of findings. Here, we introduce a principled approach to model selection, relying on Bayesian information criterion, for static and time-resolved spectral parameterization of neurophysiological data. We present extensive tests of the approach with ground-truth and empirical magnetoencephalography recordings. Data-driven model selection enhances both the specificity and sensitivity of spectral and spectrogram decompositions, even in non-stationary contexts. Overall, the proposed spectral decomposition with data-driven model selection minimizes the reliance on user expertise and subjective choices, enabling more robust, reproducible, and interpretable research findings.

4.
Physiol Meas ; 45(9)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39197476

RESUMEN

Objective. Time-frequency (T-F) analysis of electroencephalographic (EEG) is a common technique to characterise spectral changes in neural activity. This study explores the limitations of utilizing conventional spectral techniques in examining cyclic event-related cortical activities due to challenges, including high inter-trial variability.Approach. Introducing the cycle-frequency (C-F) analysis, we aim to enhance the evaluation of cycle-locked respiratory events. For synthetic EEG that mimicked cycle-locked pre-motor activity, C-F had more accurate frequency and time localization compared to conventional T-F analysis, even for a significantly reduced number of trials and a variability of breathing rhythm.Main results. Preliminary validations using real EEG data during both unloaded breathing and loaded breathing (that evokes pre-motor activity) suggest potential benefits of using the C-F method, particularly in normalizing time units to cyclic activity phases and refining baseline placement and duration.Significance. The proposed approach could provide new insights for the study of rhythmic neural activities, complementing T-F analysis.


Asunto(s)
Corteza Cerebral , Electroencefalografía , Respiración , Electroencefalografía/métodos , Humanos , Corteza Cerebral/fisiología , Procesamiento de Señales Asistido por Computador , Factores de Tiempo , Masculino
5.
Gait Posture ; 113: 443-451, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111227

RESUMEN

BACKGROUND: Neurodegenerative diseases (NDDs) pose significant challenges due to their debilitating nature and limited therapeutic options. Accurate and timely diagnosis is crucial for optimizing patient care and treatment strategies. Gait analysis, utilizing wearable sensors, has shown promise in assessing motor abnormalities associated with NDDs. RESEARCH QUESTION: Research Question 1 To what extent can analyzing the interaction of both limbs in the time-frequency domain serve as a suitable methodology for accurately classifying NDDs? Research Question 2 How effective is the utilization of color-coded images, in conjunction with deep transfer learning models, for the classification of NDDs? METHODS: GaitNDD database was used, comprising recordings from patients with Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, and healthy controls. The gait signals underwent signal preparation, wavelet coherence analysis, and principal component analysis for feature enhancement. Deep transfer learning models (AlexNet, GoogLeNet, SqueezeNet) were employed for classification. Performance metrics, including accuracy, sensitivity, specificity, precision, and F1 score, were evaluated using 5-fold cross-validation. RESULTS: The classification performance of the models varied depending on the time window used. For 5-second gait signal segments, AlexNet achieved an accuracy of 95.91 %, while GoogLeNet and SqueezeNet achieved accuracies of 96.49 % and 92.73 %, respectively. For 10-second segments, AlexNet outperformed other models with an accuracy of 99.20 %, while GoogLeNet and SqueezeNet achieved accuracies of 96.75 % and 95.00 %, respectively. Statistical tests confirmed the significance of the extracted features, indicating their discriminative power for classification. SIGNIFICANCE: The proposed method demonstrated superior performance compared to previous studies, offering a non-invasive and cost-effective approach for the automated diagnosis of NDDs. By analyzing the interaction between both legs during walking using wavelet coherence, and utilizing deep transfer learning models, accurate classification of NDDs was achieved.


Asunto(s)
Análisis de la Marcha , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/fisiopatología , Análisis de la Marcha/métodos , Trastornos Neurológicos de la Marcha/clasificación , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/etiología , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/clasificación , Análisis de Ondículas , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/clasificación , Aprendizaje Profundo , Procesamiento de Señales Asistido por Computador , Estudios de Casos y Controles , Enfermedad de Huntington/fisiopatología , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/clasificación , Anciano
6.
J Behav Ther Exp Psychiatry ; 85: 101980, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39033577

RESUMEN

BACKGROUND: Depression is usually characterized by impairments in reward function, and shows altered motivation to reward in reinforcement learning. This study further explored whether task difficulty affects reinforcement learning in college students with and without depression symptom. METHODS: The depression symptom group (20) and the no depression symptom group (26) completed a probabilistic reward learning task with low, medium, and high difficulty levels, in which task the response bias to reward and the discriminability of reward were analyzed. Additionally, electrophysiological responses to reward and loss feedback were recorded and analyzed while they performed a simple gambling task. RESULTS: The depression symptom group showed more response bias to reward than the no depression symptom group when the task was easy and then exhibited more quickly decrease in response bias to reward as task difficulty increased. The no depression symptom group showed a decrease in response bias only in the high-difficulty condition. Further regression analyses showed that, the Feedback-related negativity (FRN) and theta oscillation could predict response bias change in the low-difficulty condition, the FRN and oscillations of theta and delta could predict response bias change in the medium and high-difficulty conditions. LIMITATIONS: The electrophysiological responses to loss and reward were not recorded in the same task as the reinforcement learning behaviors. CONCLUSIONS: College students with depression symptom are more sensitive to task difficulty during reinforcement learning. The FRN, and oscillations of theta and delta could predict reward leaning behavior.


Asunto(s)
Depresión , Electroencefalografía , Refuerzo en Psicología , Recompensa , Estudiantes , Humanos , Masculino , Femenino , Adulto Joven , Depresión/fisiopatología , Universidades , Adulto , Potenciales Evocados/fisiología
7.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38976973

RESUMEN

Joint attention is an indispensable tool for daily communication. Abnormalities in joint attention may be a key reason underlying social impairment in schizophrenia spectrum disorders. In this study, we aimed to explore the attentional orientation mechanism related to schizotypal traits in a social situation. Here, we employed a Posner cueing paradigm with social attentional cues. Subjects needed to detect the location of a target that is cued by gaze and head orientation. The power in the theta frequency band was used to examine the attentional process in the schizophrenia spectrum. There were four main findings. First, a significant association was found between schizotypal traits and attention orientation in response to invalid gaze cues. Second, individuals with schizotypal traits exhibited significant activation of neural oscillations and synchrony in the theta band, which correlated with their schizotypal tendencies. Third, neural oscillations and synchrony demonstrated a synergistic effect during social tasks, particularly when processing gaze cues. Finally, the relationship between schizotypal traits and attention orientation was mediated by neural oscillations and synchrony in the theta frequency band. These findings deepen our understanding of the impact of theta activity in schizotypal traits on joint attention and offer new insights for future intervention strategies.


Asunto(s)
Atención , Señales (Psicología) , Esquizofrenia , Ritmo Teta , Humanos , Masculino , Femenino , Ritmo Teta/fisiología , Atención/fisiología , Adulto Joven , Esquizofrenia/fisiopatología , Adulto , Electroencefalografía , Trastorno de la Personalidad Esquizotípica/fisiopatología , Psicología del Esquizofrénico
8.
Neuroscience ; 557: 37-50, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-38986738

RESUMEN

The study employed event-related potential (ERP), time-frequency analysis, and functional connectivity to comprehensively explore the influence of male's relative height on third-party punishment (TPP) and its underlying neural mechanism. The results found that punishment rate and transfer amount are significantly greater when the height of the third-party is lower than that of the recipient, suggesting that male's height disadvantage promotes TPP. Neural results found that the height disadvantage induced a smaller N1. The height disadvantage also evoked greater P300 amplitude, more theta power, and more alpha power. Furthermore, a significantly stronger wPLI between the rTPJ and the posterior parietal and a significantly stronger wPLI between the DLPFC and the posterior parietal were observed when third-party was at the height disadvantage. These results imply that the height disadvantage causes negative emotions and affects the fairness consideration in the early processing stage; the third-party evaluates the blame of violators and makes an appropriate punishment decision later. Our findings indicate that anger and reputation concern caused by height disadvantage promote TPP. The current study holds significance as it underscores the psychological importance of height in males, broadens the perspective on factors influencing TPP, validates the promoting effect of personal disadvantages on prosocial behavior, enriches our understanding of indirect reciprocity theory, and extends the application of the evolution theory of Napoleon complex.


Asunto(s)
Electroencefalografía , Castigo , Humanos , Masculino , Adulto Joven , Encéfalo/fisiología , Estatura/fisiología , Potenciales Evocados/fisiología , Adulto , Conducta Social
9.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001122

RESUMEN

Human Activity Recognition (HAR), alongside Ambient Assisted Living (AAL), are integral components of smart homes, sports, surveillance, and investigation activities. To recognize daily activities, researchers are focusing on lightweight, cost-effective, wearable sensor-based technologies as traditional vision-based technologies lack elderly privacy, a fundamental right of every human. However, it is challenging to extract potential features from 1D multi-sensor data. Thus, this research focuses on extracting distinguishable patterns and deep features from spectral images by time-frequency-domain analysis of 1D multi-sensor data. Wearable sensor data, particularly accelerator and gyroscope data, act as input signals of different daily activities, and provide potential information using time-frequency analysis. This potential time series information is mapped into spectral images through a process called use of 'scalograms', derived from the continuous wavelet transform. The deep activity features are extracted from the activity image using deep learning models such as CNN, MobileNetV3, ResNet, and GoogleNet and subsequently classified using a conventional classifier. To validate the proposed model, SisFall and PAMAP2 benchmark datasets are used. Based on the experimental results, this proposed model shows the optimal performance for activity recognition obtaining an accuracy of 98.4% for SisFall and 98.1% for PAMAP2, using Morlet as the mother wavelet with ResNet-101 and a softmax classifier, and outperforms state-of-the-art algorithms.


Asunto(s)
Actividades Humanas , Análisis de Ondículas , Humanos , Actividades Humanas/clasificación , Algoritmos , Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Actividades Cotidianas , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
10.
Neuropsychologia ; 201: 108941, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38908477

RESUMEN

Utilizing the high temporal resolution of event-related potentials (ERPs), we compared the time course of processing incongruent color versus 3D-depth information. Participants were asked to judge whether the food color (color condition) or 3D structure (3D-depth condition) was congruent or incongruent with their previous knowledge and experience. The behavioral results showed that the reaction times in the congruent 3D-depth condition were slower than those in the congruent color condition. The reaction times in the incongruent 3D-depth condition were slower than those in the incongruent color condition. The ERP results showed that incongruent color stimuli induced a larger N270, larger P300, and smaller N400 components in the fronto-central region than the congruent color stimuli. Incongruent 3D-depth stimuli induced a smaller N1 in the occipital region, larger P300 and smaller N400 in the parietal-occipital region than congruent 3D-depth stimuli. The time-frequency analysis found that incongruent color stimuli induced a larger theta band (360-580 ms) activation in the fronto-central region than congruent color stimuli. Incongruent 3D-depth stimuli induced larger alpha and beta bands (240-350 ms) activation in the parietal region than congruent 3D-depth stimuli. Our results suggest that the human brain deals with violating general color or depth knowledge in different time courses. We speculate that the depth perception conflict was dominated by solving the problem with visual processing, whereas the color perception conflict was dominated by solving the problem with semantic violation.


Asunto(s)
Encéfalo , Percepción de Color , Percepción de Profundidad , Electroencefalografía , Potenciales Evocados , Tiempo de Reacción , Humanos , Masculino , Femenino , Percepción de Color/fisiología , Adulto Joven , Tiempo de Reacción/fisiología , Encéfalo/fisiología , Potenciales Evocados/fisiología , Percepción de Profundidad/fisiología , Adulto , Estimulación Luminosa , Factores de Tiempo , Mapeo Encefálico
11.
Clin Neurophysiol ; 164: 119-129, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865779

RESUMEN

OBJECTIVE: Giant somatosensory evoked potentials (SEPs) are observed in patients with cortical myoclonus. Short-latency components (SLC), are regarded as evoked epileptic activities or paroxysmal depolarization shifts (PDSs). This study aimed to reveal the electrophysiological significance of the middle-latency component (MLC) P50 of the SEPs. METHODS: Twenty-two patients with cortical myoclonus having giant SEPs (patient group) and 15 healthy controls were included in this study. Waveform changes in SEPs before and after perampanel (PER) treatment were evaluated in the patient group. The wide range, time-frequency properties underlying the waveforms were compared between the groups. RESULTS: After PER treatment, SLC was prolonged and positively correlated with PER concentration, whereas MLC showed no correlation with PER concentration. Time-frequency analysis showed a power increase (156 Hz in all patients, 624 Hz in benign adult familial myoclonus epilepsy patients) underlying SLC and a power decrease (156 Hz, 624 Hz) underlying MLC in the patient group. CONCLUSIONS: The high-frequency power increase in SLCs and decrease in MLCs clearly reflected PDS and subsequent hyperpolarization, respectively. This relationship was similar to that of interictal epileptiform discharges, suggesting that giant SEPs evoke epileptic complexes of excitatory and inhibitory components. SIGNIFICANCE: MLCs of giant SEPs reflected inhibitory components.


Asunto(s)
Potenciales Evocados Somatosensoriales , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Adulto Joven , Adolescente , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología , Persona de Mediana Edad , Piridonas/uso terapéutico , Epilepsias Mioclónicas/fisiopatología , Epilepsias Mioclónicas/diagnóstico , Nitrilos
12.
Entropy (Basel) ; 26(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38920473

RESUMEN

Bridges may undergo structural vibration responses when exposed to seismic waves. An analysis of structural vibration characteristics is essential for evaluating the safety and stability of a bridge. In this paper, a signal time-frequency feature extraction method (NTFT-ESVD) integrating standard time-frequency transformation, singular value decomposition, and information entropy is proposed to analyze the vibration characteristics of structures under seismic excitation. First, the experiment simulates the response signal of the structure when exposed to seismic waves. The results of the time-frequency analysis indicate a maximum relative error of only 1% in frequency detection, and the maximum relative errors in amplitude and time parameters are 5.9% and 6%, respectively. These simulation results demonstrate the reliability of the NTFT-ESVD method in extracting the time-frequency characteristics of the signal and its suitability for analyzing the seismic response of the structure. Then, a real seismic wave event of the Su-Tong Yangtze River Bridge during the Hengchun earthquake in Taiwan (2006) is analyzed. The results show that the seismic waves only have a short-term impact on the bridge, with the maximum amplitude of the vibration response no greater than 1 cm, and the maximum vibration frequency no greater than 0.2 Hz in the three-dimensional direction, indicating that the earthquake in Hengchun will not have any serious impact on the stability and security of the Su-Tong Yangtze River Bridge. Additionally, the reliability of determining the arrival time of seismic waves by extracting the time-frequency information from structural vibration response signals is validated by comparing it with results from seismic stations (SSE/WHN/QZN) at similar epicenter distances published by the USGS. The results of the case study show that the combination of dynamic GNSS monitoring technology and time-frequency analysis can be used to analyze the impact of seismic waves on the bridge, which is of great help to the manager in assessing structural seismic damage.

13.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931805

RESUMEN

Health assessment and preventive maintenance of structures are mandatory to predict injuries and to schedule required interventions, especially in seismic areas. Structural health monitoring aims to provide a robust and effective approach to obtaining valuable information on structural conditions of buildings and civil infrastructures, in conjunction with methodologies for the identification and, sometimes, localization of potential risks. In this paper a low-cost solution for structural health monitoring is proposed, exploiting a customized embedded system for the acquisition and storing of measurement signals. Experimental surveys for the assessment of the sensing node have also been performed. The obtained results confirmed the expected performances, especially in terms of resolution in acceleration and tilt measurement, which are 0.55 mg and 0.020°, respectively. Moreover, we used a dedicated algorithm for the classification of recorded signals in the following three classes: noise floor (being mainly related to intrinsic noise of the sensing system), exogenous sources (not correlated to the dynamic behavior of the structure), and structural responses (the response of the structure to external stimuli, such as seismic events, artificially forced and/or environmental solicitations). The latter is of main interest for the investigation of structures' health, while other signals need to be recognized and filtered out. The algorithm, which has been tested against real data, demonstrates relevant features in performing the above-mentioned classification task.

14.
Brain Commun ; 6(3): fcae166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938620

RESUMEN

Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.

15.
J Assoc Res Otolaryngol ; 25(4): 329-340, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789824

RESUMEN

Otoacoustic emissions (OAEs) are generated in the cochlea and recorded in the ear canal either as a time domain waveform or as a collection of complex responses to tones in the frequency domain (Probst et al. J Account Soc Am 89:2027-2067, 1991). They are typically represented either in their original acquisition domain or in its Fourier-conjugated domain. Round-trip excursions to the conjugated domain are often used to perform filtering operations in the computationally simplest way, exploiting the convolution theorem. OAE signals consist of the superposition of backward waves generated in different cochlear regions by different generation mechanisms, over a wide frequency range. The cochlear scaling symmetry (cochlear physics is the same at all frequency scales), which approximately holds in the human cochlea, leaves its fingerprints in the mathematical properties of OAE signals. According to a generally accepted taxonomy (Sher and Guinan Jr, J Acoust Soc Am 105:782-798, 1999), OAEs are generated either by wave-fixed sources, moving with frequency according with the cochlear scaling (as in nonlinear distortion) or by place-fixed sources (as in coherent reflection by roughness). If scaling symmetry holds, the two generation mechanisms yield OAEs with different phase gradient delay: almost null for wave-fixed sources, and long (and scaling as 1/f) for place-fixed sources. Thus, the most effective representation of OAE signals is often that respecting the cochlear scale-invariance, such as the time-frequency domain representation provided by the wavelet transform. In the time-frequency domain, the elaborate spectra or waveforms yielded by the superposition of OAE components from different generation mechanisms assume a much clearer 2-D pattern, with each component localized in a specific and predictable region. The wavelet representation of OAE signals is optimal both for visualization purposes and for designing filters that effectively separate different OAE components, improving both the specificity and the sensitivity of OAE-based applications. Indeed, different OAE components have different physiological meanings, and filtering dramatically improves the signal-to-noise ratio.


Asunto(s)
Emisiones Otoacústicas Espontáneas , Análisis de Ondículas , Humanos , Emisiones Otoacústicas Espontáneas/fisiología , Cóclea/fisiología
16.
Heliyon ; 10(9): e30192, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707352

RESUMEN

Objective: Although the parietal cortex is related to consciousness, the dorsolateral prefrontal and primary motor cortices are the usual targets for repetitive transcranial magnetic stimulation (rTMS) for prolonged disorders of consciousness (pDoC). Herein, we applied parietal rTMS to patients with pDoC, to verify its neurobehavioral effects and explore a new potential rTMS target. Materials and methods: Twenty-six patients with pDoC were assigned to a rTMS or sham group. The rTMS group received 10 sessions of parietal rTMS; the sham group received 10 sessions of sham stimulation. The Coma Recovery Scale-Revised (CRS-R) and event-related potential (ERP) were collected before and after the 10 sessions or sham sessions. Results: After the 10 sessions, the rTMS group showed: a significant CRS-R score increase; ERP appearance of a P300 waveform and significantly increased Fz amplitudes; increased potentials on topographic mapping, especially in the left prefrontal cortex; and an increase in delta and theta band powers at Fz, Cz, and Pz. The sham group did not show such changes in CRS-R score or ERP results statistically. Conclusion: Parietal rTMS shows promise as a novel intervention in the recovery of consciousness in pDoC. It showed neurobehavioral enhancement of residual brain function and may promote frontal activity by enhancing frontal-parietal connections. The parietal cortex may thus be an alternative for rTMS therapy protocols.

17.
Sci Rep ; 14(1): 8582, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615053

RESUMEN

Human movements are adjusted by motor adaptation in order to maintain their accuracy. There are two systems in motor adaptation, referred to as explicit or implicit adaptation. It has been suggested that the implicit adaptation is based on the prediction error and has been used in a number of motor adaptation studies. This study aimed to examine the effect of visual memory on prediction error in implicit visuomotor adaptation by comparing visually- and memory-guided reaching tasks. The visually-guided task is thought to be implicit learning based on prediction error, whereas the memory-guided task requires more cognitive processes. We observed the adaptation to visuomotor rotation feedback that is gradually rotated. We found that the adaptation and retention rates were higher in the visually-guided task than in the memory-guided task. Furthermore, the delta-band power obtained by electroencephalography (EEG) in the visually-guided task was increased immediately following the visual feedback, which indicates that the prediction error was larger in the visually-guided task. Our results show that the visuomotor adaptation is enhanced in the visually-guided task because the prediction error, which contributes update of the internal model, was more reliable than in the memory-guided task. Therefore, we suggest that the processing of the prediction error is affected by the task-type, which in turn affects the rate of the visuomotor adaptation.


Asunto(s)
Electroencefalografía , Retroalimentación Sensorial , Humanos , Aprendizaje , Memoria , Movimiento
18.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38676121

RESUMEN

Synchrosqueezed transform (SST) is a time-frequency analysis method that can improve energy aggregation and reconstruct signals, which has been applied in the fields of medical treatment, fault diagnosis, and seismic wave processing. However, when dealing with time-varying signals, SST suffers from poor time-frequency resolution and is unable to deal with long signals. In order to accurately extract the characteristic frequency of variable speed rolling bearing faults, this paper proposes a synchrosqueezed transform method based on fast kurtogram and demodulation and piecewise aggregate approximation (PAA). The method firstly filters and demodulates the original signal using fast kurtogram and Hilbert transform to reduce the influence of background noise and improve the time-frequency resolution. Then, it compresses the signal by using piecewise aggregate approximation, so that the SST can deal with long signals and, thus, extract the fault characteristic frequency. The experimental data verification results indicate that the method can effectively identify the fault characteristic frequency of variable-speed rolling bearings.

19.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676148

RESUMEN

The prevalence of Low Probability of Interception (LPI) and Low Probability of Exploitation (LPE) radars in contemporary Electronic Warfare (EW) presents an ongoing challenge to defense mechanisms, compelling constant advances in protective strategies. Noise radars are examples of LPI and LPE systems that gained substantial prominence in the past decade despite exhibiting a common drawback of limited Doppler tolerance. The Advanced Pulse Compression Noise (APCN) waveform is a stochastic radar signal proposed to amalgamate the LPI and LPE attributes of a random waveform with the Doppler tolerance feature inherent to a linear frequency modulation. In the present work, we derive closed-form expressions describing the APCN signal's ambiguity function and spectral containment that allow for a proper analysis of its detection performance and ability to remove range ambiguities as a function of its stochastic parameters. This paper also presents a more detailed address of the LPI/LPE characteristic of APCN signals claimed in previous works. We show that sophisticated Electronic Intelligence (ELINT) systems that employ Time Frequency Analysis (TFA) and image processing methods may intercept APCN and estimate important parameters of APCN waveforms, such as bandwidth, operating frequency, time duration, and pulse repetition interval. We also present a method designed to intercept and exploit the unique characteristics of the APCN waveform. Its performance is evaluated based on the probability of such an ELINT system detecting an APCN radar signal as a function of the Signal-to-Noise Ratio (SNR) in the ELINT system. We evaluated the accuracy and precision of the random variables characterizing the proposed estimators as a function of the SNR. Results indicate a probability of detection close to 1 and show good performance, even for scenarios with a SNR slightly less than -10 dB. The contributions in this work offer enhancements to noise radar capabilities while facilitating improvements in ESM systems.

20.
J Inherit Metab Dis ; 47(4): 690-702, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600724

RESUMEN

Classical galactosaemia (CG) is a hereditary disease in galactose metabolism that despite dietary treatment is characterized by a wide range of cognitive deficits, among which is language production. CG brain functioning has been studied with several neuroimaging techniques, which revealed both structural and functional atypicalities. In the present study, for the first time, we compared the oscillatory dynamics, especially the power spectrum and time-frequency representations (TFR), in the electroencephalography (EEG) of CG patients and healthy controls while they were performing a language production task. Twenty-one CG patients and 19 healthy controls described animated scenes, either in full sentences or in words, indicating two levels of complexity in syntactic planning. Based on previous work on the P300 event related potential (ERP) and its relation with theta frequency, we hypothesized that the oscillatory activity of patients and controls would differ in theta power and TFR. With regard to behavior, reaction times showed that patients are slower, reflecting the language deficit. In the power spectrum, we observed significant higher power in patients in delta (1-3 Hz), theta (4-7 Hz), beta (15-30 Hz) and gamma (30-70 Hz) frequencies, but not in alpha (8-12 Hz), suggesting an atypical oscillatory profile. The time-frequency analysis revealed significantly weaker event-related theta synchronization (ERS) and alpha desynchronization (ERD) in patients in the sentence condition. The data support the hypothesis that CG language difficulties relate to theta-alpha brain oscillations.


Asunto(s)
Electroencefalografía , Galactosemias , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Galactosemias/fisiopatología , Encéfalo/fisiopatología , Encéfalo/metabolismo , Estudios de Casos y Controles , Lenguaje , Tiempo de Reacción , Adolescente , Potenciales Relacionados con Evento P300/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA