Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
ACS Synth Biol ; 13(8): 2611-2620, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39092606

RESUMEN

3-Hydroxypropionic acid (3-HP) is a highly sought-after platform chemical serving as a precursor to a variety of high value-added chemical products. In this study, we designed and constructed a novel light-powered in vitro synthetic enzymatic biosystem comprising acetyl-CoA ligase, acetyl-CoA carboxylase, malonyl-CoA reductase, and phosphotransferase to efficiently produce 3-HP through CO2 fixation from acetate, a cost-effective and readily available substrate. The system employed natural thylakoid membranes (TMs) for the regeneration of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Comprehensive investigations were conducted on the effects of buffer solutions, substrate concentrations, enzyme loading levels, and TMs loading levels to optimize the yield of 3-HP. Following optimization, a production of 0.46 mM 3-HP was achieved within 6 h from an initial 0.5 mM acetate, with a yield nearing 92%. This work underscores the simplicity of 3-HP production via an in vitro biomanufacturing platform and highlights the potential for incorporating TMs as a sustainable and environmentally friendly approach in biomanufacturing processes.


Asunto(s)
Acetil-CoA Carboxilasa , Dióxido de Carbono , Ácido Láctico , Dióxido de Carbono/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/análogos & derivados , Luz , Tilacoides/metabolismo , Adenosina Trifosfato/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Acetatos/metabolismo , Acetatos/química , Oxidorreductasas
2.
Plant J ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136360

RESUMEN

The intracellular localization of the florigen FLOWERING LOCUS T (FT) is important for its long-distance transport toward the shoot apical meristem. However, the mechanisms regulating the FT localization remain poorly understood. Here, we discovered that in Arabidopsis thaliana, the chloroplast-localized protein THYLAKOID FORMATION 1 (THF1) physically interacts with FT, sequestering FT in the outer chloroplast envelope. Loss of THF1 function led to temperature-insensitive flowering, resulting in early flowering, especially under low ambient temperatures. THF1 mainly acts in the leaf vasculature and shoot apex to prevent flowering. Mutation of CONSTANS or FT completely suppressed the early flowering of thf1-1 mutants. FT and THF1 interact via their anion binding pocket and coiled-coil domain (CCD), respectively. Deletion of the CCD in THF1 by gene editing caused temperature-insensitive early flowering similar to that observed in the thf1-1 mutant. FT levels in the outer chloroplast envelope decreased in the thf1-1 mutant, suggesting that THF1 is important for sequestering FT. Furthermore, THF1 protein levels decreased in seedlings grown at high ambient temperature, suggesting an explanation for its role in plant responses to ambient temperature. A thf1-1 phosphatidylglycerolphosphate synthase 1 (pgp1) double mutant exhibited additive acceleration of flowering at 23 and 16°C, compared to the single mutants, indicating that THF1 and phosphatidylglycerol (PG) act as independent but synergistic regulators of temperature-responsive flowering. Collectively, our results provide an understanding of the genetic pathway involving THF1 and its role in temperature-responsive flowering and reveal a previously unappreciated additive interplay between THF1 and PG in temperature-responsive flowering.

3.
EMBO J ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192033

RESUMEN

Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's ß-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.

4.
Bioact Mater ; 41: 523-536, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39210966

RESUMEN

Chronic bioenergetic imbalances and inflammation caused by hyperglycemia are obstacles that delay diabetic wound healing. However, it is difficult to directly deliver energy and metabolites to regulate intracellular energy metabolism using biomaterials. Herein, we propose a light-driven bioenergetic and oxygen-releasing hydrogel (PTKM@HG) that integrates the thylakoid membrane-encapsulated polyphenol nanoparticles (PTKM NPs) to regulate the energy metabolism and inflammatory response in diabetic wounds. Upon red light irradiation, the PTKM NPs exhibited oxygen generation and H2O2 deletion capacity through a photosynthetic effect to restore hypoxia-induced mitochondrial dysfunction. Meanwhile, the PTKM NPs could produce exogenous ATP and NADPH to enhance mitochondrial function and facilitate cellular anabolism by regulating the leucine-activated mTOR signaling pathway. Furthermore, the PTKM NPs inherited antioxidative and anti-inflammatory ability from polyphenol. Finally, the red light irradiated PTKM@HG hydrogel augmented the survival and migration of cells keratinocytes, and then accelerated angiogenesis and re-epithelialization of diabetic wounds. In short, this study provides possibilities for effectively treating diseases by delivering key metabolites and energy based on such a light-driven bioenergetic hydrogel.

5.
Biochim Biophys Acta Bioenerg ; 1865(4): 149493, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971351

RESUMEN

In the field of photosynthesis, only a limited number of approaches of super-resolution fluorescence microscopy can be used, as the functional architecture of the thylakoid membrane in chloroplasts is probed through the natural fluorescence of chlorophyll molecules. In this work, we have used a custom-built fluorescence microscopy method called Single Pixel Reconstruction Imaging (SPiRI) that yields a 1.4 gain in lateral and axial resolution relative to confocal fluorescence microscopy, to obtain 2D images and 3D-reconstucted volumes of isolated chloroplasts, obtained from pea (Pisum sativum), spinach (Spinacia oleracea) and Arabidopsis thaliana. In agreement with previous studies, SPiRI images exhibit larger thylakoid grana diameters when extracted from plants under low-light regimes. The three-dimensional thylakoid architecture, revealing the complete network of the thylakoid membrane in intact, non-chemically-fixed chloroplasts can be visualized from the volume reconstructions obtained at high resolution. From such reconstructions, the stromal connections between each granum can be determined and the fluorescence intensity in the stromal lamellae compared to those of neighboring grana.


Asunto(s)
Arabidopsis , Microscopía Fluorescente , Pisum sativum , Spinacia oleracea , Tilacoides , Tilacoides/metabolismo , Pisum sativum/metabolismo , Spinacia oleracea/metabolismo , Arabidopsis/metabolismo , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos , Cloroplastos/metabolismo , Clorofila/metabolismo
6.
J Exp Bot ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989593

RESUMEN

In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the posttranslational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the cotranslational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for posttranslational transport, while a ribosome-associated pool coordinates its cotranslational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis thaliana cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in posttranslational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear- as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.

7.
Plant Cell Environ ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047015

RESUMEN

Prevalent interactions among marine phytoplankton triggered by long-range climatic stressors are well-known environmental disturbers of community structure. Dynamic response of phytoplankton physiology is likely to come from interspecies interactions rather than direct climatic effect on single species. However, studies on enigmatic interactions among interspecies, which are induced by bioactive extracellular compounds (BECs), especially between related harmful algae sharing similar shellfish toxins, are scarce. Here, we investigated how BECs provoke the interactions between two notorious algae, Alexandrium minutum and Gymnodinium catenatum, which have similar paralytic shellfish toxin (PST) profiles. Using techniques including electron microscopy and transcriptome analysis, marked disruptions in G. catenatum intracellular microenvironment were observed under BECs pressure, encompassing thylakoid membrane deformations, pyrenoid matrix shrinkage and starch sheaths disappearance. In addition, the upregulation of gene clusters responsible for photosystem-I Lhca1/4 and Rubisco were determined, leading to weaken photon captures and CO2 assimilation. The redistribution of lipids and proteins occurred at the subcellular level based on in situ focal plane array FTIR imaging approved the damages. Our findings illuminated an intense but underestimated interspecies interaction triggered by BECs, which is responsible for dysregulating photosynthesis and organelle function in inferior algae and may potentially account for fitness alteration in phytoplankton community.

8.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39041196

RESUMEN

Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.


Asunto(s)
Cianobacterias , Fotosíntesis , Fotosíntesis/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Evolución Biológica , Filogenia , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular
9.
Plants (Basel) ; 13(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732479

RESUMEN

The plastid stroma-localized chaperone HSP90C plays a crucial role in maintaining optimal proteostasis within chloroplasts and participates in protein translocation processes. While existing studies have revealed HSP90C's direct interaction with the Sec translocase-dependent client pre-protein PsbO1 and the SecY1 subunit of the thylakoid membrane-bound Sec1 translocase channel system, its direct involvement with the extrinsic homodimeric Sec translocase subunit, SecA1, remains elusive. Employing bimolecular fluorescence complementation (BiFC) assay and other in vitro analyses, we unraveled potential interactions between HSP90C and SecA1. Our investigation revealed dynamic interactions between HSP90C and SecA1 at the thylakoid membrane and stroma. The thylakoid membrane localization of this interaction was contingent upon active HSP90C ATPase activity, whereas their stromal interaction was associated with active SecA1 ATPase activity. Furthermore, we observed a direct interaction between these two proteins by analyzing their ATP hydrolysis activities, and their interaction likely impacts their respective functional cycles. Additionally, using PsbO1, a model Sec translocase client pre-protein, we studied the intricacies of HSP90C's possible involvement in pre-protein translocation via the Sec1 system in chloroplasts. The results suggest a complex nature of the HSP90C-SecA1 interaction, possibly mediated by the Sec client protein. Our studies shed light on the nuanced aspects of HSP90C's engagement in orchestrating pre-protein translocation, and we propose a potential collaborative role of HSP90C with SecA1 in actively facilitating pre-protein transport across the thylakoid membrane.

10.
Front Plant Sci ; 15: 1381040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576791

RESUMEN

In our earlier works, we have shown that the rate-limiting steps, associated with the dark-to-light transition of Photosystem II (PSII), reflecting the photochemical activity and structural dynamics of the reaction center complex, depend largely on the lipidic environment of the protein matrix. Using chlorophyll-a fluorescence transients (ChlF) elicited by single-turnover saturating flashes, it was shown that the half-waiting time (Δτ 1/2) between consecutive excitations, at which 50% of the fluorescence increment was reached, was considerably larger in isolated PSII complexes of Thermostichus (T.) vulcanus than in the native thylakoid membrane (TM). Further, it was shown that the addition of a TM lipid extract shortened Δτ 1/2 of isolated PSII, indicating that at least a fraction of the 'missing' lipid molecules, replaced by detergent molecules, caused the elongation of Δτ 1/2. Here, we performed systematic experiments to obtain information on the nature of TM lipids that are capable of decreasing Δτ 1/2. Our data show that while all lipid species shorten Δτ 1/2, the negatively charged lipid phosphatidylglycerol appears to be the most efficient species - suggesting its prominent role in determining the structural dynamics of PSII reaction center.

11.
Plant Cell ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567528

RESUMEN

Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes that convert sunlight into chemical energy. These membranes house photosystems II and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, thylakoid membranes have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas thylakoid membranes in cyanobacteria are relatively simple they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of thylakoid membrane architectures in phototrophs, and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.

12.
Plant Cell Physiol ; 65(6): 1014-1028, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668647

RESUMEN

The chloroplast thylakoid membrane is composed of membrane lipids and photosynthetic protein complexes, and the orchestration of thylakoid lipid biosynthesis and photosynthesis-associated protein accumulation is considered important for thylakoid development. Galactolipids consist of ∼80% of the thylakoid lipids, and their biosynthesis is fundamental for chloroplast development. We previously reported that the suppression of galactolipid biosynthesis decreased the expression of photosynthesis-associated nuclear-encoded genes (PhAPGs) and photosynthesis-associated plastid-encoded genes (PhAPGs). However, the mechanism for coordinative regulation between galactolipid biosynthesis in plastids and the expression of PhANGs and PhAPGs remains largely unknown. To elucidate this mechanism, we investigated the gene expression patterns in galactolipid-deficient Arabidopsis seedlings during the de-etiolation process. We found that galactolipids are crucial for inducing both the transcript accumulation of PhANGs and PhAPGs and the accumulation of plastid-encoded photosynthesis-associated proteins in developing chloroplasts. Genetic analysis indicates the contribution of the GENOMES UNCOUPLED1 (GUN1)-mediated plastid-to-nucleus signaling pathway to PhANG regulation in response to galactolipid levels. Previous studies suggested that the accumulation of GUN1 reflects the state of protein homeostasis in plastids and alters the PhANG expression level. Thus, we propose a model that galactolipid biosynthesis determines the protein homeostasis in plastids in the initial phase of de-etiolation and optimizes GUN1-dependent signaling to regulate the PhANG expression. This mechanism might contribute to orchestrating the biosynthesis of lipids and proteins for the biogenesis of functional chloroplasts in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Galactolípidos , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Galactolípidos/metabolismo , Galactolípidos/biosíntesis , Fotosíntesis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tilacoides/metabolismo , Plantones/genética , Plantones/metabolismo , Proteínas de Unión al ADN
13.
Methods Mol Biol ; 2790: 427-438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649585

RESUMEN

The biological role of lipids goes far beyond the formation of a structural membrane bilayer platform for membrane proteins and controlling fluxes across the membranes. For example, in photosynthetic thylakoid membranes, lipids occupy well-defined binding niches within protein complexes and determine the structural organization of membrane proteins and their function by controlling generic physicochemical membrane properties. In this chapter, two-dimensional thin-layer chromatography (2D TLC) and gas chromatography (GC) techniques are presented for quantitative analysis of lipid classes and fatty acids in thylakoid membranes. In addition, lipid extraction methods from isolated thylakoid membranes and leaves are described together with a procedure for the derivatization of fatty acids to fatty acid methyl esters (FAME) that is required for GC analysis.


Asunto(s)
Ácidos Grasos , Fotosíntesis , Tilacoides , Tilacoides/metabolismo , Cromatografía en Capa Delgada/métodos , Cromatografía de Gases/métodos , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Lípidos/química , Lípidos/aislamiento & purificación , Lípidos/análisis
14.
Methods Mol Biol ; 2798: 11-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587733

RESUMEN

Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trapping experiments.


Asunto(s)
Superóxidos , Tilacoides , Oxígeno Singlete , Especies Reactivas de Oxígeno , Detección de Spin , Aniones
15.
Methods Mol Biol ; 2798: 27-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587734

RESUMEN

Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.


Asunto(s)
Luminiscencia , Oxígeno Singlete , Oxígeno , Clorofila , Colorantes Fluorescentes
16.
Photosynth Res ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441791

RESUMEN

Photosynthetic light-dependent reactions occur in thylakoid membranes where embedded proteins capture light energy and convert it to chemical energy in the form of ATP and NADPH for use in carbon fixation. One of these integral membrane proteins is Photosystem I (PSI). PSI catalyzes light-driven transmembrane electron transfer from plastocyanin (Pc) to oxidized ferredoxin (Fd). Electrons from reduced Fd are used by the enzyme ferredoxin-NADP+ reductase (FNR) for the reduction of NADP+ to NADPH. Fd and Pc are both small soluble proteins whereas the larger FNR enzyme is associated with the membrane. To investigate electron shuttling between these diffusible and embedded proteins, thylakoid photoreduction of NADP+ was studied. As isolated, both spinach and cyanobacterial thylakoids generate NADPH upon illumination without extraneous addition of Fd. These findings indicate that isolated thylakoids either (i) retain a "pool" of Fd which diffuses between PSI and membrane bound FNR or (ii) that a fraction of PSI is associated with Fd, with the membrane environment facilitating PSI-Fd-FNR interactions which enable multiple turnovers of the complex with a single Fd. To explore the functional association of Fd with PSI in thylakoids, electron paramagnetic resonance (EPR) spectroscopic methodologies were developed to distinguish the signals for the reduced Fe-S clusters of PSI and Fd. Temperature-dependent EPR studies show that the EPR signals of the terminal [4Fe-4S] cluster of PSI can be distinguished from the [2Fe-2S] cluster of Fd at > 30 K. At 50 K, the cw X-band EPR spectra of cyanobacterial and spinach thylakoids reduced with dithionite exhibit EPR signals of a [2Fe-2S] cluster with g-values gx = 2.05, gy = 1.96, and gz = 1.89, confirming that Fd is present in thylakoid preparations capable of NADP+ photoreduction. Quantitation of the EPR signals of P700+ and dithionite reduced Fd reveal that Fd is present at a ratio of ~ 1 Fd per PSI monomer in both spinach and cyanobacterial thylakoids. Light-driven electron transfer from PSI to Fd in thylakoids confirms Fd is functionally associated (< 0.4 Fd/PSI) with the acceptor end of PSI in isolated cyanobacterial thylakoids. These EPR experiments provide a benchmark for future spectroscopic characterization of Fd interactions involved in multistep relay of electrons following PSI charge separation in the context of photosynthetic thylakoid microenvironments.

17.
Plant Methods ; 20(1): 38, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468328

RESUMEN

BACKGROUND: The extraction of thylakoids is an essential step in studying the structure of photosynthetic complexes and several other aspects of the photosynthetic process in plants. Conventional protocols have been developed for selected land plants grown in controlled conditions. Plants accumulate defensive chemical compounds such as polyphenols to cope with environmental stresses. When the polyphenol levels are high, their oxidation and cross-linking properties prevent thylakoid extraction. RESULTS: In this study, we developed a method to counteract the hindering effects of polyphenols by modifying the grinding buffer with the addition of both vitamin C (VitC) and polyethylene glycol (PEG4000). This protocol was first applied to the marine plant Posidonia oceanica and then extended to other plants synthesizing substantial amounts of polyphenols, such as Quercus pubescens (oak) and Vitis vinifera (grapevine). Native gel analysis showed that photosynthetic complexes (PSII, PSI, and LHCII) can be extracted from purified membranes and fractionated comparably to those extracted from the model plant Arabidopsis thaliana. Moreover, total protein extraction from frozen P. oceanica leaves was also efficiently carried out using a denaturing buffer containing PEG and VitC. CONCLUSIONS: Our work shows that the use of PEG and VitC significantly improves the isolation of native thylakoids, native photosynthetic complexes, and total proteins from plants containing high amounts of polyphenols and thus enables studies on photosynthesis in various plant species grown in natural conditions.

18.
Nutr Rev ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518202

RESUMEN

CONTEXT: It has been suggested that thylakoid supplementation could be associated with favorable changes in appetite. However, the present trials are inconsistent. OBJECTIVE: This systematic review and meta-analysis aimed to investigate whether thylakoid supplementation is effective in hunger/fullness changes. DATA SOURCES: A comprehensive literature search was performed before conducting a systematic search in PubMed, Scopus, and ISI Web of Sciences databases up to May 2023. DATA EXTRACTION: Of the 262 articles found, 5 articles that measured hunger fullness expressed as ratings on the visual analog scale (VAS) for appetite analyses were selected and thoroughly examined. Relevant information, such as the authors' names, year of publication, country of origin, study design, number and status of participants, intervention dosage and type, study duration, assay used, and key findings, was extracted from these articles. The Jadad scale was used to evaluate the quality of studies. DATA ANALYSIS: The data were obtained using STATA version 13 (StataCorp). Effect sizes were reported as weighted mean differences (WMDs) and 95% confidence intervals (CIs). Subgroup analyses were performed to estimate whether the effects of thylakoid supplementation on hunger and fullness varied according to dose, intervention duration, baseline population age and body mass index, baseline hunger and fullness, total sample size, and study quality. Fractional polynomial modeling was carried out to estimate time- and dose-response meta-analysis of the association between thylakoid and satiety and fullness. The meta-analysis also suggests a significant association between the combination of thylakoids with meals and reduced hunger (WMD: -2.415 mm; 95% CI: -3.544, -1.287; P < 0.001) and increased fullness (WMD: +4.602 mm; 95% CI: 2.356, 6.848; P < 0.001). Further analysis showed that thylakoid supplementation with 2 doses of 5 g/day (P = 0.002) and 7.4 g/day (P = 0.021) is more effective in reducing the feeling of hunger during an intervention of less than 56 days (P < 0.001) and with a lower level of hunger (VAS <45 mm, P < 0.001). Furthermore, a significant increase in the perception of fullness was found at a duration of less than 84 days (P < 0.001) and baseline fullness of more than 45 mm (P < 0.001). CONCLUSIONS: Supplementation with thylakoid shows favorable effects on reducing hunger and increasing fullness during a shorter intervention duration. Further trials are required to shed light on this relationship. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42023432429.

19.
Planta ; 259(4): 90, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478121

RESUMEN

MAIN CONCLUSION: A structural re-modeling of the thylakoid system, including granum size and regularity, occurs in chlorophyll-deficient wheat mutants affected by photosynthetic membrane over-reduction. In the chloroplast of land plants, the thylakoid system is defined by appressed grana stacks and unstacked stroma lamellae. This study focuses on the variations of the grana organization occurring in outdoor-grown wheat mutants characterized by low chlorophyll content and a tendency for photosynthetic membrane over-reduction. Triticum aestivum ANK-32A and Triticum durum ANDW-7B were compared to their corresponding WT lines, NS67 and LD222, respectively. Electron micrographs of chloroplasts were used to calculate grana ultrastructural parameters. Photosynthetic parameters were obtained by modulated chlorophyll fluorescence and applying Light Curves (LC) and Rapid Light Curves (RLC) protocols. For each photosynthetic parameter, the difference Δ(RLC-LC) was calculated to evaluate the flexible response to light in the examined lines. In the mutants, fewer and smaller disks formed grana stacks characterized by a marked increase in lateral and cross-sectional irregularity, both negatively correlated with the number of layers per granum. A relationship was found between membrane over-reduction and granum structural irregularity. The possible acclimative significance of a greater proportion of stroma-exposed grana domains in relieving the excess electron pressure on PSI is discussed.


Asunto(s)
Clorofila , Tilacoides , Triticum/genética , Complejo de Proteína del Fotosistema II , Estudios Transversales , Cloroplastos/ultraestructura
20.
Microorganisms ; 12(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543663

RESUMEN

In cyanobacteria, the interplay of ATP and lactate dynamics underpins cellular energetics; their pronounced shifts in response to zero-valent iron (nZVI) nanoparticles and ampicillin highlight the nuanced metabolic adaptations to environmental challenges. In this study, we investigated the impact of nZVIs and ampicillin on Fremyella diplosiphon cellular energetics as determined by adenosine triphosphate (ATP) content, intracellular and extracellular lactate levels, and their impact on cell morphology as visualized by transmission electron microscopy. While a significant increase in ATP concentration was observed in 0.8 mg/L ampicillin-treated cells compared to the untreated control, a significant decline was noted in cells treated with 3.2 mg/L nZVIs. ATP levels in the combination regimen of 0.8 mg/L ampicillin and 3.2 mg/L nZVIs were significantly elevated (p < 0.05) compared to the 3.2 mg/L nZVI treatment. Intracellular and extracellular lactate levels were significantly higher in 0.8 mg/L ampicillin, 3.2 mg/L nZVIs, and the combination regimen compared to the untreated control; however, extracellular lactate levels were the highest in cells treated with 3.2 mg/L nZVIs. Visualization of morphological changes indicated increased thylakoid membrane stacks and inter-thylakoidal distances in 3.2 mg/L nZVI-treated cells. Our findings demonstrate a complex interplay of nanoparticle and antibiotic-induced responses, highlighting the differential impact of these stressors on F. diplosiphon metabolism and cellular integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA