Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 29(6): 1879-1888, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37947075

RESUMEN

Extended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here, we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector. We present postprocessing techniques to extract images of dislocations and surface steps, for a nitride thin film, from measurements of backscattered electron intensities and intensity distributions in unprocessed EBSD patterns. In virtual diode (VD) imaging, the backscattered electron intensity is monitored for a selected segment of the unprocessed EBSD patterns. In center of mass (COM) imaging, the position of the center of the backscattered electron intensity distribution is monitored. Additionally, both methods can be combined (VDCOM). Using both VD and VDCOM, images of only threading dislocations, or dislocations and surface steps can be produced, with VDCOM images exhibiting better signal-to-noise. The applicability of VDCOM imaging is demonstrated across a range of nitride semiconductor thin films, with varying surface step and dislocation densities.

2.
Nano Lett ; 23(10): 4095-4100, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141159

RESUMEN

Thermoelectric materials can harvest electrical energy from temperature gradients, and could play a role as power supplies for sensors and other devices. Here, we characterize fundamental in-plane electrical and thermoelectric properties of layered WSe2 over a range of thicknesses, from 10 to 96 nm, between 300 and 400 K. The devices are electrostatically gated with an ion gel, enabling us to probe both electron and hole regimes over a large range of carrier densities. We extract the highest n- and p-type Seebeck coefficients for thin-film WSe2, -500 and 950 µV/K respectively, reported to date at room temperature. We also emphasize the importance of low substrate thermal conductivity on such lateral thermoelectric measurements, improving this platform for future studies on other nanomaterials.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234397

RESUMEN

The inexorable increase of energy demand and the efficiency bottleneck of monocrystalline silicon solar cell technology is promoting the research and development of alternative photovoltaic materials. Copper-arsenic-sulfide (CAS) compounds are still rather unexplored in the literature, yet they have been regarded as promising candidates for use as p-type absorber in solar cells, owing to their broad raw material availability, suitable bandgap and high absorption coefficient. Here, a comprehensive study is presented on the structural and optoelectronic properties of CAS thin-films deposited via radio-frequency magnetron co-sputtering, using a commercial Cu target together with a Cu-As-S target with material obtained from local resources, specifically from mines in the Portuguese region of the Iberian Pyrite Belt. Raman and X-ray diffraction analysis confirm that the use of two targets results in films with pronounced stoichiometry gradients, suggesting a transition from amorphous CAS compounds to crystalline djurleite (Cu31S16), with the increasing proximity to the Cu target. Resistivity values from 4.7 mΩ·cm to 17.4 Ω·cm are obtained, being the lowest resistive films, those with pronounced sub-bandgap free-carrier absorption. The bandgap values range from 2.20 to 2.65 eV, indicating promising application as wide-bandgap semiconductors in third-generation (e.g., multi-junction) photovoltaic devices.

4.
ACS Appl Mater Interfaces ; 12(27): 30565-30571, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32538613

RESUMEN

We propose a method to measure the fundamental parameters that govern diffusion transport in optically thin quantum dot semiconductor films and apply it to quantum dot materials with different ligands. Thin films are excited optically, and the profile of photogenerated carriers is modeled using diffusion-based transport equations and taking into account the optical cavity effects. Correlation with steady-state photoluminescence experiments on different stacks comprising a quenching layer allows the extraction of the carrier diffusion length accurately from the experimental data. In the time domain, the mapping of the transient PL data with the solutions of the time-dependent diffusion equation leads to accurate calculations of the photogenerated carrier mobility. These findings allow the estimation of the speed limitations for diffusion-based transport in QD absorbers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA