Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000768

RESUMEN

Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis (TGA) shows that the samples were 30% carbon fiber by weight. X-ray microscopy (XRM) and porosity studies find 25% voids/volume for undried material and 1.63% voids/volume for dry material. Differential scanning calorimetry (DSC) shows a glass transition temperature (Tg) of 66 °C, while dynamic mechanical analysis (DMA) found Tg as 82 °C. The rheology indicated that PETG CF30% is a good printing material at 220-250 °C. Bending experiments show an average of 48.5 MPa for flexure strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with 3D-printed PLA and PETG from the literature demonstrated that LFAM-printed PETG CF30% had a comparative high Young's modulus and had similar tensile strength. For design purposes, prints from LFAM should consider both material choice and print parameters, especially when considering large layer heights.

2.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37447432

RESUMEN

Herein, polytetrafluoroethylene (PTFE) is evaluated as a reinforcement agent in material extrusion (MEX) additive manufacturing (AM), aiming to develop nanocomposites with enhanced mechanical performance. Loadings up to 4.0 wt.% were introduced as fillers of polylactic acid (PLA) and polyamide 12 (PA12) matrices. Filaments for MEX AM were prepared to produce corresponding 3D-printed samples. For the thorough characterization of the nanocomposites, a series of standardized mechanical tests were followed, along with AFM, TGA, Raman spectroscopy, EDS, and SEM analyses. The results showed an improved mechanical response for filler concentrations between 2.0 and 3.0 wt.%. The enhancement for the PLA/PTFE 2.0 wt.% in the tensile strength reached 21.1% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 34.1%, and 41.7%, respectively. For PLA/PTFE 2.0 wt.%, the enhancement in the flexural strength reached 57.6% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 14.7%, and 17.2%, respectively. This research enables the ability to deploy PTFE as a reinforcement agent in the PA12 and PLA thermoplastic engineering polymers in the MEX AM process, expanding the potential applications.

3.
Materials (Basel) ; 16(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36614485

RESUMEN

Modern approaches dedicated to controlling the operation of gas foil bearings require advanced measurement techniques to comprehensively investigate the bearings' thermal and thermomechanical properties. Their successful long-term maintenance with constant operational characteristics may be feasible only when the allowed thermal and mechanical regimes are rigorously kept. Hence, an adequate acquisition of experimental readings for the critical physical quantities should be conducted to track the actual condition of the bearing. The above-stated demand has motivated the authors of this present work to perform the thermomechanical characterization of the prototype installation of a gas foil bearing, applying a specialized sensing foil. This so-called top foil is a component of the structural part of the bearing's supporting layer and composed of a superalloy, Inconel 625. The strain and temperature distributions were identified based on the readings from the strain gauges and integrated thermocouples mounted on the top foil. The measurements' results were obtained for the experiments that represent the arbitrarily selected operational conditions of the tested bearing. Specifically, the considered measurement scenario relates to the operation at a nominal rotational speed, i.e., during the stable process, as well as to the run-up and run-out stages. The main objectives of the work are: (a) experimental proof for the described functionalities of the designed and manufactured specialized sensing foil that allow for the application of a novel approach to the bearing's characterization, and (b) qualitative investigation of the relation between the mechanical and thermal properties of the tested bearing, using the measurements conducted with the newly proposed technical solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA