Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Int J Biol Macromol ; 277(Pt 2): 134133, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074704

RESUMEN

In recent years, numerous attempts have been made to develop a low-cost adsorbent for selectively recovering industrially important products from fermentation broth or complex mixtures. The current study is a novel attempt to selectively adsorb esterase from Trichoderma harzianum using cheap adsorbents like bentonite (BT), activated charcoal (AC), silicon dioxide (SiO2), and titanium dioxide (TiO2). AC had the highest esterase adsorption of 97.58% due to its larger surface area of 594.45 m3/g. SiO2 was found to have the highest selectivity over esterase, with an estimated purification fold of 7.2. Interestingly, the purification fold of 5.5 was found in the BT-extracted fermentation broth. The functional (FT-IR) and morphological analysis (SEM-EDX) were used to characterize the adsorption of esterase. Esterase adsorption on AC, SiO2, and TiO2 was well fitted by Freundlich isotherm, demonstrating multilayer adsorption of esterase. A pseudo-second-order kinetic model was developed for esterase adsorption in various adsorbents. Thermodynamic analysis revealed that adsorption is an endothermic process. AC has the lowest Gibbs free energy of -10.96 kJ/mol, which supports the spontaneous maximum adsorption of both esterase and protein. In the desorption study, the maximum recovery of esterase from TiO2 using sodium chloride was 41.34 %. Unlike other adsorbents, the AC-adsorbed esterase maintained its catalytic activity and stability, implying that it could be used as an immobilization system for commercial applications. According to the kinetic analysis, the overall rate of the reaction was controlled by reaction kinetics rather than external mass transfer resistance, as indicated by the Damkohler number.


Asunto(s)
Esterasas , Adsorción , Cinética , Esterasas/metabolismo , Esterasas/química , Esterasas/aislamiento & purificación , Carbón Orgánico/química , Titanio/química , Termodinámica , Dióxido de Silicio/química , Hypocreales/enzimología , Biocatálisis , Bentonita/química
2.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998911

RESUMEN

In this study, a PtSn/Al2O3 catalyst with bimetallic uniform distribution in the sphere was synthesized. The PDH performance and characterization analyses, such as with FTIR, XPS, and NH3-TPD, were investigated. The effects of acid on the PDH performance were analyzed. Citric acid (CA) acted as a competing adsorbent in the preparation process of the PtSn/Al2O3 catalyst to synthesize the uniform catalyst. Water washing and alkali-treated samples were also studied. SEM line scanning revealed that increased the apparent concentration of Pt metal from 0.23 to 0.30 with citric acid. In contrast to the fresh PtSn/Al2O3 catalyst, the addition of citric acid increased the PDH selectivity from 74% to 93%. After alkali or water washing treatments, the catalyst's selectivity further increased to 96%. Strong acid sites promoted the breaking of C-C bonds during the PDH reaction, resulting in more methane and ethylene byproducts, and decreased catalyst selectivity for fresh PtSn/Al2O3. From the PDH reaction thermodynamic analysis, a relatively sub-atmospheric pressure environment with a lower propane pressure could be the reasonable choice.

3.
Bioresour Technol ; 406: 131030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917911

RESUMEN

This study investigates the efficacy of pyrite in enhancing biohydrogen production from xylose at low temperature (20 °C). Higher hydrogen yield rates (Rm) and reduced lag time (λ) were achieved across initial xylose concentrations ranging from 2-10 g/L. At an optimal xylose concentration of 5 g/L, pyrite reduced λ by 2.5 h and increased Rm from 1.3 to 2.7 mL h-1. These improvements are attributed to pyrite's ability to enhance the secretion of extracellular polymeric substance and flavins, facilitate NADH and NAD+ generation and transition, and favor biohydrogen production. Thermodynamic analyses and Gibbs free energy calculations further elucidated pyrite's role in the full reaction process and rate-limiting steps at low temperature. This study offers valuable insights into improving the efficiency of biohydrogen production at low temperature, with significant implications for energy conservation.


Asunto(s)
Hidrógeno , Sulfuros , Termodinámica , Xilosa , Hidrógeno/metabolismo , Xilosa/química , Sulfuros/química , Hierro/química , Frío , NAD/metabolismo , Temperatura
4.
Foods ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928754

RESUMEN

The aging process of wine is influenced by various factors, including the presence of oxygen, the temperature, and the storage conditions. While oxygen can have both positive and negative effects on wine quality, temperature fluctuations during storage can impact its chemical composition. This study has investigated the aging of Merlot and Sangiovese wines under traditional cellar conditions and underwater, exploring the influence of storage parameters on their chemical evolution. Analyzing parameters such as temperature, pressure, and chemical composition, the research revealed subtle but significant changes in the wines over time. Both wines showed a gradual reduction in total phenols, anthocyanins, non-flavonoid compounds, and total sulfur dioxide, irrespective of the storage conditions. Preliminary findings suggested that aging wine underwater does not induce significant alterations in its fundamental characteristics compared to traditional cellar aging. These results contribute to a deeper understanding of wine aging processes and highlight the importance of storage conditions in preserving wine quality. Further research is needed to fully elucidate the complexities of underwater aging and its broader implications for wine production.

5.
Materials (Basel) ; 17(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930407

RESUMEN

Supercritical water gasification (SCWG) technology is highly promising for its ability to cleanly and efficiently convert biomass to hydrogen. This paper developed a model for the gasification of rice straw in supercritical water (SCW) to predict the direction and limit of the reaction based on the Gibbs free energy minimization principle. The equilibrium distribution of rice straw gasification products was analyzed under a wide range of parameters including temperatures of 400-1200 °C, pressures of 20-50 MPa, and rice straw concentrations of 5-40 wt%. Coke may not be produced due to the excellent properties of supercritical water under thermodynamic constraints. Higher temperatures, lower pressures, and biomass concentrations facilitated the movement of the chemical equilibrium towards hydrogen production. The hydrogen yield was 47.17 mol/kg at a temperature of 650 °C, a pressure of 25 MPa, and a rice straw concentration of 5 wt%. Meanwhile, there is an absorptive process in the rice straw SCWG process for high-calorific value hydrogen production. Energy self-sufficiency of the SCWG process can be maintained by adding small amounts of oxygen (ER < 0.2). This work would be of great value in guiding rice straw SCWG experiments.

6.
Bioresour Technol ; 403: 130906, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806134

RESUMEN

This study examines the gasification kinetics of Brazilian municipal solid waste (MSW) and its components under air, CO2, and air/CO2 (70/30 vol%) atmospheres. The ignition indices of paper and plastic are 6 and 3 times that of food waste, which are 38.6 × 10-3 %/min3 and 19.6 × 10-3 %/min3, respectively, implying a faster separation of volatile compounds from the paper and plastic. The minimum Eα values of 132 kJ/mol and 140 kJ/mol have been obtained for paper waste under air and air/CO2, respectively. On CO2 condition, MSW has an average Ea value of 96 kJ/mol. Under an air/CO2 atmosphere, a high synergistic ΔW of -4.7 wt% has been identified between individual components. The presence of air and CO2 improves the oxidation and char gasification process, thus resulting in better combustion. Hence, the gasification of MSW under an air/CO2 atmosphere would improve the waste-to-energy plant's performance and minimize the CO2 emission.


Asunto(s)
Dióxido de Carbono , Residuos Sólidos , Termogravimetría , Brasil , Cinética , Dióxido de Carbono/análisis , Eliminación de Residuos/métodos , Atmósfera/química , Gases , Ciudades
7.
Ultrason Sonochem ; 106: 106882, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669798

RESUMEN

Present study investigates the effects of probe size geometry on thermodynamic kinetics, rheology, and microstructure of wheat and tapioca starch. Ultrasound treatment using different probe diameters (20 mm and 100 mm) significantly influenced the gelatinization process. Results showed reduced enthalpy (ΔH) and Gibbs energy (ΔG), indicating enhanced gelatinization efficiency. According to the results, using a 20 mm and 100 mm probe leads to a reduction of 52.7 % and 68.6 % in reaction enthalpy for wheat starch compared to native starch, respectively. Microstructure analysis revealed structural changes, with ultrasound treatment leading to granular fractures and a sheet-like structure with air bubbles. The rheological behavior of the starches is found to exhibit shear thinning behavior, with the Casson model providing the best fit for the experimental data. Moreover, rheology modeling using Herschel-Bulkley and power law models showed increased viscosity and shear stress in larger probes. Numerical simulation data demonstrated that probe size influenced ultrasonic pressure, sound pressure level, and thermal power dissipation density, affecting fluid motion and velocity field components. Moreover, the maximum dissipated power decreases from 8.43 to 0.655 mW/m3 with an increase in probe diameter from 20 to 100 mm. The average yield shear stress values are calculated as 3.36 and 3.14 for wheat and tapioca starches, respectively. The larger probe diameter leads to greater entropy increases, with tapioca starch showing a 4.72 % increase and wheat starch a 4.97 % increase, compared to 2.56 % and 3.11 %, respectively, with the smaller probe. Additionally, the Keller-Miksis model provided insights into bubble dynamics, revealing increased pressure and temperature with higher pressure amplitudes.

8.
Food Res Int ; 176: 113655, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163678

RESUMEN

Due to the trace concentrations of gallic acid (GA), the interaction mechanism between GA and flavor compounds is limited, and the effects on the aroma compounds of Moutai Baijiu are even more unclear. In this study, the aroma compounds and phenolic compounds in Moutai Baijiu were investigated by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). A total of 63 volatiles and 10 phenolic compounds were identified, and 16 esters and 4 alcohols were identified as the important aroma substances (odor activity values ≥1). The effect of GA on the release of aroma compounds was investigated by sensory analysis and partition coefficient. The results showed that GA mainly inhibited the volatilization of alcohols, low concentrations of GA promoted the release of esters, and high concentrations slowed down or even inhibited the release effect affected by the hydrophobicity of aroma compounds. UV spectroscopy and thermodynamic analysis further revealed that the interaction of GA with 1-propanol was attributed mainly to hydrogen bonding and van der Waals forces, and the interaction with other compounds was mainly influenced by hydrophobic effects. These results show that gallic acid can effectively control the release of the aromas of Moutai Baijiu, highlight the important role of GA on the volatiles of baijiu, and provide theoretical support for further healthy improvement of the sensory quality of baijiu.


Asunto(s)
Ácido Gálico , Odorantes , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ácido Gálico/análisis , Olfatometría/métodos , Ésteres/análisis , Fenoles/análisis
9.
Environ Sci Pollut Res Int ; 31(7): 10273-10295, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36645598

RESUMEN

An experimental investigation was executed on the solar evacuated tube collector containing a collective condenser unit of heat pipe arrangement attached to a single slope solar desalination system. The brackish water preheating was done by the unique solar collector before entering the still. Performance analysis of the system was carried out with 0.001, 0.002 and 0.003 kg/s brackish water flow rate in the collector and 0.01, 0.02 and 0.03 m of brine water depth in a single-slope solar desalination system. The feasibility of the proposed system was evaluated by thermodynamic analysis, embodied energy, CO2 mitigation and economic analysis. Active desalination system with collective condenser heat pipe evacuated tube collector at 0.001 kg/s brackish water flow rate and 0.01 m water depth produced maximum freshwater yield, average daily thermal and exergy efficiency of 3.085 l/m2day, 30.25% and 3.17% respectively. An increase of maximum freshwater yield of 37.11% and average daily thermal efficiency of 43.5% respectively were achieved at a brackish water flow rate of 0.001 kg/s and 0.01 m of basin water depth in comparison with a traditional single slope solar desalination system. The embodied energy of the system was estimated as 630.77 kWh, and 0.001 kg/s and 0.01 m of water depth resulted in the highest earned carbon credit of 16,954.48 INR. The minimum payback period of 2.19 years was achieved at the lower brackish water flow rate and basin water depth of 0.001 kg/s and 0.01 m respectively.


Asunto(s)
Calor , Energía Solar , Luz Solar , Agua , Aguas Salinas , Agua Dulce
10.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894589

RESUMEN

The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2-318.2 K under fixed atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility, and correlations were made using the "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". In mixtures of {(DMSO (1) + H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10-1 at 318.2 K) and lowest in pure H2O (3.14 × 10-7 at 298.2 K). The output of computational models revealed good relationships between the solubility data from the experiments. The dissolution of ITN was "endothermic and entropy-driven" in all of the {(DMSO (1) + H2O (2)} mixtures examined, according to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest that DMSO has a great potential for solubilizing ITN in H2O.

11.
Waste Manag ; 171: 195-206, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660632

RESUMEN

Styrene-butadiene rubber (SBR) is widely used in tires, which brings great challenge to the disposal and reclaiming of the used tires. The ring-opening reaction pathways of benzene rings in hydrothermal gasification of styrene-butadiene rubber were revealed based on reactive force field molecular dynamics (ReaxFF-MD) simulation. H-abstraction reaction that OH radicals capture H atom from the vinyl group of styrene was critical to the degrading of the styrene monomers. The energy barrier of H2O2 converted to OH radicals was lower than that of O2 and pure water converted to OH radicals. The oxidants that can urge OH radical formed in reaction were beneficial to SBR degradation, which could be assigned to confirm that SBR degradation with H2O2 was better than that with oxygen at the same concentration. The addition of oxidant could be helpful for decreasing the degradation temperature of styrene monomers. At oxidant equivalent ratio (ER) of 0.1, H2 yield at 2500 K lifted after 135 ps and increased by 75% at 500 ps compared with that without oxidants. According to the chemical equilibrium analysis, the optimal ER for H2 was 0.4 between 350 and 600 °C (real temperatures). The results could provide theoretic support and experiment guidance for adding oxidants in reclaiming waste rubber products.

12.
J Comput Chem ; 44(25): 1976-1985, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37352129

RESUMEN

Understanding the molecular basis for protein stability requires a thermodynamic analysis of protein folding. Thermodynamic analysis is often performed by sampling many atomistic conformations using molecular simulations that employ either explicit or implicit water models. However, it remains unclear to what extent thermodynamic results from different solvation models are reliable at the molecular level. In this study, we quantify the influence of both solvation models on folding stability at the individual backbone and side chain resolutions. We assess the residue-specific folding free energy components of a ß-sheet protein and a helical protein using trajectories resulting from TIP3P explicit and generalized Born/surface area implicit solvent simulations of model proteins. We found that the thermodynamic discrepancy due to the implicit solvent mostly originates from charged side chains, followed by the under-stabilized hydrophobic ones. In contrast, the contributions of backbone residue in both proteins were comparable for explicit and implicit water models. Our study lays out the foundation for detailed thermodynamic assessment of solvation models in the context of protein simulation.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Termodinámica , Simulación por Computador , Solventes/química , Agua/química
13.
Environ Sci Pollut Res Int ; 30(55): 116906-116920, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37121947

RESUMEN

A series of fibrous aminated adsorbents for CO2 adsorption were prepared by covalent incorporation of poly (glycidyl methacrylate) (PGMA) by graft copolymerization of GMA onto electron beam (EB) irradiated polyethylenepolypropylene (PE/PP) fibrous sheets and subsequent amination with ethylenediamine (EDA), diethylenetriamine (DETA), or tetraethylenepentamine (TEPA). The physico-chemical properties of the adsorbents were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. All the adsorbents displayed typic primary and secondary amine features combined with a decrease in both of crystallinity and surface area of PE/PP, and such a decrease was higher in adsorbents with longer aliphatic chain of the amine. Of all adsorbents, TEPA-containing fibres showed the highest CO2 adsorption capacity and thus was further investigated for CO2 capture from CO2/CH4 mixtures of different gas ratios under various pressures and temperatures. The selectivity of CO2 over CH4 and equilibrium isotherms, kinetics, and thermodynamics of the adsorption on the fibrous aminated adsorbent were all investigated. The Sips model was found to best fit the isotherm of CO2 adsorption suggesting the presence of a combination of monolayer and multilayer adsorptions. The adsorption kinetic data was found to best fit Elovich model reflecting chemisorption. The ΔG°, ΔS°, and ΔH° showed positive values suggesting that the adsorption of CO2 on the present fibrous adsorbent was non-spontaneous with an increase in randomness implying that the process was endothermic. Overall, it can be suggested that PE/PP-g-PGMA/TEPA adsorbent has a strong potential for separation of CO2 from NG.


Asunto(s)
Dióxido de Carbono , Contaminantes Químicos del Agua , Dióxido de Carbono/química , Adsorción , Termodinámica , Temperatura , Espectroscopía Infrarroja por Transformada de Fourier , Trietilenofosforamida , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
14.
Glob Chall ; 7(4): 2200208, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37020618

RESUMEN

The exploitation of biomass to reduce the dependency on fossil fuels represents a challenge that needs to be solved as soon as possible. Nowadays, one of the most fashionable processes is γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML). Deep understanding of the thermodynamic aspects involved in this process is key for a successful outcome, but detailed studies are missing in the existing literature. A thermodynamic study of the reaction of γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML) is performed by the Gibbs free energy minimization method. The effect of various reaction conditions (temperature, concentration, flow rate) and the implication of possible intermediates and byproducts are assessed. Conversion and selectivity are calculated from the simulation of the ML hydrogenation using isopropanol as the hydrogen donor under continuous flow conditions. Significant increases in GVL selectivity can be achieved under dry conditions, keeping the high conversion. Comparison between theoretical and experimental results from a previous article discloses the effect of using 5%RuTiO2 catalysts, which increases the selectivity from 3-40% to 41-98%. Enthalpy and Gibbs free energy of the reactions at issue are also calculated from models using Barin equations according to Aspen Physical Property System parameters.

15.
Int J Biol Macromol ; 235: 123833, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870654

RESUMEN

The role of glycosylation in the binding of glycoproteins to carbohydrate substrates has not been well understood. The present study addresses this knowledge gap by elucidating the links between the glycosylation patterns of a model glycoprotein, a Family 1 carbohydrate-binding module (TrCBM1), and the thermodynamic and structural properties of its binding to different carbohydrate substrates using isothermal titration calorimetry and computational simulation. The variations in glycosylation patterns cause a gradual transition of the binding to soluble cellohexaose from an entropy-driven process to an enthalpy-driven one, a trend closely correlated with the glycan-induced shift of the predominant binding force from hydrophobic interactions to hydrogen bonding. However, when binding to a large surface of solid cellulose, glycans on TrCBM1 have a more dispersed distribution and thus have less adverse impact on the hydrophobic interaction forces, leading to overall improved binding. Unexpectedly, our simulation results also suggest an evolutionary role of O-mannosylation in transforming the substrate binding features of TrCBM1 from those of type A CBMs to those of type B CBMs. Taken together, these findings provide new fundamental insights into the molecular basis of the role of glycosylation in protein-carbohydrate interactions and are expected to better facilitate further studies in this area.


Asunto(s)
Celulosa , Polisacáridos , Glicosilación , Celulosa/química , Simulación por Computador , Termodinámica , Unión Proteica , Sitios de Unión
16.
mSystems ; 8(2): e0127422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971551

RESUMEN

Rational engineering of gas-fermenting bacteria for high yields of bioproducts is vital for a sustainable bioeconomy. It will allow the microbial chassis to renewably valorize natural resources from carbon oxides, hydrogen, and/or lignocellulosic feedstocks more efficiently. To date, rational design of gas-fermenting bacteria such as changing the expression levels of individual enzymes to obtain the desired pathway flux is challenging, because pathway design must follow a verifiable metabolic blueprint indicating where interventions should be executed. Based on recent advances in constraint-based thermodynamic and kinetic models, we identify key enzymes in the gas-fermenting acetogen Clostridium ljungdahlii that correlate with the production of isopropanol. To this extent, we integrated a metabolic model in comparison with proteomics measurements and quantified the uncertainty for a variety of pathway targets needed to improve the bioproduction of isopropanol. Based on in silico thermodynamic optimization, minimal protein requirement analysis, and ensemble modeling-based robustness analysis, we identified the top two significant flux control sites, i.e., acetoacetyl-coenzyme A (CoA) transferase (AACT) and acetoacetate decarboxylase (AADC), overexpression of which could lead to increased isopropanol production. Our predictions directed iterative pathway construction, which enabled a 2.8-fold increase in isopropanol production compared to the initial version. The engineered strain was further tested under gas-fermenting mixotrophic conditions, where more than 4 g/L isopropanol was produced when CO, CO2, and fructose were provided as the substrates. In a bioreactor environment sparging with CO, CO2, and H2 only, the strain produced 2.4 g/L isopropanol. Our work highlighted that the gas-fermenting chasses can be fine-tuned for high-yield bioproduction by directed and elaborative pathway engineering. IMPORTANCE Highly efficient bioproduction from gaseous substrates (e.g., hydrogen and carbon oxides) will require systematic optimization of the host microbes. To date, the rational redesign of gas-fermenting bacteria is still in its infancy, due in part to the lack of quantitative and precise metabolic knowledge that can direct strain engineering. Here, we provide a case study by engineering isopropanol production in gas-fermenting Clostridium ljungdahlii. We demonstrate that a modeling approach based on the thermodynamic and kinetic analysis at the pathway level can provide actionable insights into strain engineering for optimal bioproduction. This approach may pave the way for iterative microbe redesign for the conversion of renewable gaseous feedstocks.


Asunto(s)
2-Propanol , Dióxido de Carbono , 2-Propanol/metabolismo , Dióxido de Carbono/metabolismo , Ingeniería Metabólica , Cinética , Clostridium/genética , Gases/metabolismo , Hidrógeno/metabolismo , Termodinámica
17.
Chembiochem ; 24(13): e202200727, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949028

RESUMEN

Sequence-based protein design approaches are being adopted to generate highly functional enzymes; however, screening the enzymes remains a time-consuming task. In this study, by analyzing the enzymatic properties of four ancestral meso-2,6-diaminopimelate dehydrogenases (AncDAPDHs), AncDAPDH-N1, -N2, -N3, and -N4, we attempted to define a new index parameter that is helpful for efficiently screening the enzymes. Biochemical and thermodynamic analyses indicated that only AncDAPDH-N4 exhibited greater thermal stability than and activity similar to those of native DAPDHs. Structural and sequence comparisons between DAPDH from Corynebacterium glutamicum (CgDAPDH) and the AncDAPDHs suggested that "quality of mutations" is a potential index parameter. In fact, the mutations introduced from CgDAPDH to AncDAPDH-N4 correlated highly with the mutations accumulated during the evolution process from mesophiles to thermophiles. These results suggest that, although there are several exceptions, the correlation coefficient can be used as an index parameter for screening high-functioning enzymes from sequence data.


Asunto(s)
Especificidad por Sustrato , Modelos Moleculares , Termodinámica
18.
Materials (Basel) ; 16(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36837244

RESUMEN

A high sintering temperature is required to acquire excellent performance in the production of porcelain but results in high fuel consumption. To prepare the porcelain with outstanding performance at a lower temperature, a self-produced additive containing calcium (CaK) was added into a three-component system of kaolinite-feldspar-quartz. XRD and SEM were used to characterize the samples. The toughening mechanism and Gibbs free energy were investigated. After introducing the CaK, the bending strength of the porcelain fired at 1513 K increased from 56.32 ± 0.65 MPa to 95.31 ± 0.63 MPa, which was 21.83% higher than that of the porcelain without CaK at an optimal firing temperature of 1603 K. The main crystal phase of the sample comprised mullite and quartz in the raw materials at 1453~1603 K. The anorthite was observed at 1453 K and interlocked with needle-shaped mullite at 1513 K in the porcelain after adding CaK, which resulted in the higher bending strength. Quantitative analysis indicated that the amount of anorthite decreased at 1513 K and disappeared at 1543 K; the amount of mullite increased with temperature. The Gibbs free energy of the reaction (CaO•Al2O3•2SiO2 + 2(Al2O3•2SiO2) → 3Al2O3•2SiO2 + CaO + 4SiO2) at high temperature was negative, which suggested that the formation of mullite (3Al2O3•2SiO2) from anorthite (CaO•Al2O3•2SiO2) was possible. These findings implied that the addition of CaK contributed to the appropriate phase composition and microstructure, and the excellent performance of the porcelain at a lower temperature. In addition, the transformation between anorthite and mullite was possible in the special raw material system. The results are of interest in producing anorthite/mullite ceramics at reduced sintering temperatures and the conversion between anorthite and mullite.

19.
Materials (Basel) ; 16(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676513

RESUMEN

Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash-dry-calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well. Our methodology was chemical thermodynamics, analyzing solubilities of metal chlorides, metal oxides and metal hydroxides in water and also standard molar Gibbs energy changes accompanying the following: (i) the reaction between metal chlorides and NaOH; (ii) the dissociation reaction of metal hydroxides into metal oxide and water vapor and (iii) the reaction between metal oxides and gaseous carbon dioxide to form metal carbonates. The major result of this paper is that the following metal-oxide NPs can be produced by the above technology from the corresponding metal chlorides: Al2O3, BeO, CaO, CdO, CoO, CuO, FeO, Fe2O3, In2O3, La2O3, MgO, MnO, Nd2O3, NiO, Pr2O3, Sb2O3, Sm2O3, SnO, Y2O3 and ZnO. From the analysis of the literature, the following nine nano-oxides have been already obtained experimentally with this technology: CaO, CdO, Co3O4, CuO, Fe2O3, NiO, MgO, SnO2 and ZnO (note: Co3O4 and SnO2 were obtained under oxidizing conditions during calcination in air). Thus, it is predicted here that the following nano-oxides can be potentially synthesized with this technology in the future: Al2O3, BeO, In2O3, La2O3, MnO, Nd2O3, Pr2O3, Sb2O3, Sm2O3 and Y2O3. The secondary result is that among the above 20 nano-oxides, the following five nano-oxides are able to capture carbon dioxide from air at least down to 42 ppm residual CO2-content, i.e., decreasing the current level of 420 ppm of CO2 in the Earth's atmosphere at least tenfold: CaO, MnO, MgO, CdO, CoO. The tertiary result is that by mixing the AuCl3 solution with NaOH solution, Au nano-particles will precipitate without forming Au-oxide NPs. The results are significant for the synthesis of metal nano-oxide particles and for capturing carbon dioxide from air.

20.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679728

RESUMEN

The generation of ozone and nitrogen oxides by laser-induced dielectric breakdown (LIDB) in mixtures of air with noble gases Ar, He, Kr, and Xe is investigated using OES and IR spectroscopy, mass spectrometry, and absorption spectrophotometry. It is shown that the formation of NO and NO2 noticeably depends on the type of inert gas; the more complex electronic configuration and the lower ionization potential of the inert gas led to increased production of NO and NO2. The formation of ozone occurs mainly due to the photolytic reaction outside the gas discharge zone. Equilibrium thermodynamic analysis showed that the formation of NO in mixtures of air with inert gases does not depend on the choice of an inert gas, while the equilibrium concentration of the NO+ ion decreases with increasing complexity of the electronic configuration of an inert gas.


Asunto(s)
Dióxido de Nitrógeno , Ozono , Nitrógeno/análisis , Gases Nobles/química , Análisis Espectral/métodos , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA