Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 32(45): e2003607, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33015889

RESUMEN

The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long-range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step toward modern TMD-based spintronics, but also enables exploration of new and exciting dimensionality-driven magnetic phenomena. To this end, tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V-doped WSe2 are shown. As vanadium concentration increases, the saturation magnetization increases, which is optimal at ≈4 at% vanadium; the highest doping level ever achieved for V-doped WSe2 monolayers. The TISF occurs at ≈175 K and becomes more pronounced upon increasing the temperature toward room temperature. The TISF can be manipulated by changing the vanadium concentration. The TISF is attributed to the magnetic-field- and temperature-dependent flipping of the nearest W-site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin-polarized density functional theory study. The findings pave the way for the development of novel spintronic and valleytronic nanodevices and stimulate further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA