Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(32): 42426-42434, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39099087

RESUMEN

Micro light-emitting diodes (micro-LEDs) are pivotal in next-generation display technologies, driven by the need for high pixel density. This study introduces a novel methodology utilizing wide sapphire nanomembranes (W-SNM) as a dual-purpose template for high-quality epitaxial growth and the mechanical lift-off of individual micro-LEDs. Micro-LEDs grow individually on W-SNM, obviating the chip singulation process. By employing mechanical fracturing of the thin W-SNM, our method facilitates the transfer of micro-LEDs without the conventional laser lift-off (LLO) process. Previously introduced sapphire nanomembranes (SNM) have shown promise in enhancing epitaxial layer quality; however, they encountered challenges in managing micro-LED size variation and achieving efficient mechanical transfer. Here, we apply simple yet effective adjustments to the SNM structure, specifically, its elevation and widening. This strategic modification allows micro-LEDs to endure applied forces without incurring cracks or defects, ensuring that only the targeted W-SNM are selectively fractured. The mechanically transferred vertical 15 × 15 µm2 micro-LED device operates at an optimal turn-on voltage of 3.3 V. Finite element simulations validate the mechanical strain distribution between the W-SNM and GaN when pressure is applied, confirming the efficacy of our design approach. This pioneering methodology offers a streamlined, efficient pathway for the production and mechanical transfer of micro-LEDs, presenting new avenues for their integration into next-generation, high-performance displays.

2.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675271

RESUMEN

In this paper, we proposed an efficient and high-precision process for fabricating large-area microlens arrays using thermal reflow combined with ICP etching. When the temperature rises above the glass transition temperature, the polymer cylinder will reflow into a smooth hemisphere due to the surface tension effect. The dimensional differences generated after reflow can be corrected using etching selectivity in the following ICP etching process, which transfers the microstructure on the photoresist to the substrate. The volume variation before and after reflow, as well as the effect of etching selectivity using process parameters, such as RF power and gas flow, were explored. Due to the surface tension effect and the simultaneous molding of all microlens units, machining a 3.84 × 3.84 mm2 silicon microlens array required only 3 min of reflow and 15 min of ICP etching with an extremely low average surface roughness Sa of 1.2 nm.

3.
Polymers (Basel) ; 15(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765585

RESUMEN

This paper presents a new approach to the simulation of the thermal reflow of e-beam-exposed polymethyl methacrylate (PMMA) taking into account its nonuniform viscosity profile. This approach is based on numerical "soapfilm" modeling of the surface evolution, processed by the free software "Surface Evolver" in area normalization mode. The PMMA viscosity profile is calculated via the simulation of the exposed PMMA number average molecular weight distribution using the Monte-Carlo method and empirical formulas. The relation between the PMMA viscosity and the mobility of PMMA surface vertices was determined via the thermal reflow simulation for uniform PMMA gratings using analytical and numerical approaches in a wide viscosity range. The agreement between reflowed profiles simulated with these two approaches emphasizes the applicability of "soapfilm" modeling in the simulation of polymer thermal reflow. The inverse mobility of PMMA surface vertices appeared to be proportional to the PMMA viscosity with a high precision. The developed approach enables thermal reflow simulations for complex nonuniform structures, which allows the use of predictable reflow as a stage of 3D microfabrication.

4.
Ultrason Sonochem ; 89: 106161, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36088893

RESUMEN

Surface acoustic wave (SAW)-based acoustofluidics has shown significant promise to manipulate micro/nanoscale objects for biomedical applications, e.g. cell separation, enrichment, and sorting. A majority of the acoustofluidic devices utilize microchannels with rectangular cross-section where the acoustic waves propagate in the direction perpendicular to the sample flow. A region with weak acoustic wave intensity, termed microchannel anechoic corner (MAC), is formed inside a rectangular microchannel of the acoustofluidic devices where the ultrasonic waves refract into the fluid at the Rayleigh angle with respect to the normal to the substrate. Due to the absence of a strong acoustic field within the MAC, the microparticles flowing adjacent to the microchannel wall remain unaffected by a direct SAW-induced acoustic radiation force (ARF). Moreover, an acoustic streaming flow (ASF) vortex produced within the MAC pulls the particles further into the corner and away from the direct ARF influence. Therefore, a residue of particles continues to flow past the SAWs without intended deflection, causing a decrease in microparticle manipulation efficiency. In this work, we introduce a cross-type acoustofluidic device composed of a half-circular microchannel, fabricated through a thermal reflow of a positive photoresist mold, to overcome the limitations associated with rectangular microchannels, prone to the MAC formation. We investigated the effects of different microchannel cross-sectional shapes with varying contact angles on the microparticle deflection in a continuous flow and found three distinct regimes of particle deflection. By systematically removing the MAC out of the microchannel cross-section, we achieved residue-free acoustofluidic microparticle manipulation via SAW-induced ARF inside a half-circular microchannel. The proposed method was applied to efficient fluorescent coating of the microparticles in a size-selective manner without any residue particles left undeflected in the MAC.


Asunto(s)
Acústica , Sonido
5.
Artículo en Inglés | MEDLINE | ID: mdl-35656598

RESUMEN

Nanopatterning for the fabrication of optical metasurfaces entails a need for high-resolution approaches like electron beam lithography that cannot be readily scaled beyond prototyping demonstrations. Block copolymer thin film self-assembly offers an attractive alternative for producing periodic nanopatterns across large areas, yet the pattern feature sizes are fixed by the polymer molecular weight and composition. Here, a general strategy is reported which overcomes the limitation of the fixed feature size by treating the copolymer thin film as a hierarchical resist, in which the nanoscale pattern motif is defined by self-assembly. Feature sizes can then be tuned by thermal reflow controlled locally by irradiative cross-linking or chemical alteration using lithographic ultraviolet light or electron beam exposure. Using blends of polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) with PS and PMMA homopolymers, we demonstrate both self-assembled PS grating and hexagonal hole patterns; exposure-controlled reflow is then used to reduce the hole diameter by as much as 50% or increase the PS grating linewidth by more than 180%. Transferring these nanopatterns, or their inverse obtained by a lift-off approach, into silicon yields structural colors that may be prescriptively controlled based on the nanoscale feature size. Furthermore, patterned exposure enables area-selective feature size control, yielding uniform structural color patterns across centimeter square areas. Electron beam lithography is also used to show that the lithographic resolution of this selective-area control can be extended to the nanoscale dimensions of the self-assembled features. The exposure-controlled reflow approach demonstrated here takes a pivotal step toward fabricating complex, hierarchical optical metasurfaces using scalable self-assembly methods.

6.
ACS Appl Mater Interfaces ; 14(3): 4767-4774, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014247

RESUMEN

Natural compound eyes endow arthropods with wide-field high-performance light-harvesting capability that enables them to capture prey and avoid natural enemies in dim light. Inspired by natural compound eyes, a curved artificial-compound-eye (cACE) photodetector for diffused light harvesting is proposed and fabricated, and its light-harvesting capability is systematically investigated. The cACE photodetector is fabricated by introducing a cACE as a light-harvesting layer on the surface of a silicon-based photodetector, with the cACE being prepared via planar artificial-compound-eye (pACE) template deformation. The distinctive geometric morphology of the as-prepared cACE effectively reduces its surface reflection and the dependence of the projected area on the incident light direction, thereby significantly improving the light-harvesting ability and output photocurrent of the silicon-based photodetector. Furthermore, the performances of cACE, pACE, and bare polydimethylsiloxane (PDMS)-attached photodetectors as diffused light detectors are investigated under different luminances. The cACE-photodetector output photocurrent is 1.395 and 1.29 times those of the bare PDMS-attached and pACE photodetectors, respectively. Moreover, this photodetector has a desirable geometric shape. Thus, the proposed cACE photodetector will facilitate development of high-performance photodetectors for luminance sensing.


Asunto(s)
Materiales Biocompatibles/química , Ojo Compuesto de los Artrópodos/química , Luz , Animales , Difusión , Ensayo de Materiales , Tamaño de la Partícula
7.
Methods ; 190: 63-71, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32247048

RESUMEN

This paper describes an innovative yet straightforward fabrication technique to create three-dimensional microstructures with controllable tapered geometries by combining conventional photolithography and thermal reflow of photoresist. Positive photoresist-based microchannel structures with varying width-to-length ratios were reflowed after their fabrication to generate three-dimensional funnel structures with varying curvatures. A polydimethylsiloxane hourglass-shaped microchannel array was next cast on these photoresist structures, and primary human lung microvascular endothelial cells were cultured in the device to engineer an artificial capillary network. Our work demonstrates that this cost-effective and straightforward fabrication technique has great potential in engineering three-dimensional microstructures for biomedical and biotechnological applications such as blood vessel regeneration strategies, drug screening for vascular diseases, microcolumns for bioseparation, and other fluid dynamic studies at microscale.


Asunto(s)
Células Endoteliales , Dimetilpolisiloxanos , Humanos
8.
Micromachines (Basel) ; 11(3)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156007

RESUMEN

This paper presents a microlens fabrication process using the timed-development-and-thermal-reflow process, which can fabricate various types of aperture geometry with a parabolic profile on a single substrate in the same batch of the process. By controlling the development time of the uncrosslinked negative photoresist, a state of partial development of the photoresist is achieved, called the timed development process. The thermal reflow process is followed after the timed development, which allows the photoresist to regain its liquid state to form a smooth meniscus trench surrounded by a crosslinked photoresist sidewall. Microlens with larger aperture size forms deeper trench with constant development time. With constant aperture size, longer developing time shows deeper meniscus trench. The depth of the meniscus trench is modeled in the relationship of the development time and aperture size. Other characteristics for the microlens including the radius of curvature, focal length, and the parabolic surface profile are modeled in the relationship of the microlens thickness and diameter. Microlens with circular, square, and hexagonal bases have been successfully fabricated and demonstrated where each geometry of the lens-bases shows different fill factors of the lens arrays. To test the fabricated lenses, a miniaturized projection lithography scheme was proposed. A centimeter-scale photomask pattern was photo-reduced using the fabricated microlens array with a ratio of 133, where the smallest linewidth was measured as 2.6 µm.

9.
ACS Appl Mater Interfaces ; 7(48): 26989-98, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26575428

RESUMEN

Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research.

10.
ACS Appl Mater Interfaces ; 7(4): 2160-5, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25612820

RESUMEN

This work reports a novel method for monolithic fabrication of high numerical aperture polymer microlens arrays (high-NA MLAs) with high packing density (PD) at wafer level. The close-packed high-NA MLAs were fabricated by incorporating conformal deposition of ultrathin fluorocarbon nanofilm and melting the cylindrical polymer islands. The NA and PD of hemispherical MLAs with a hexagonal arrangement increase up to 0.6 and 89%, respectively. The increase of NA enhances the lens transmission securing the beam width down to 1.1 µm. The close-packed high-NA MLAs enable high photon collection efficiency with signal-to-noise ratio greater than 50:1.

11.
Nano Converg ; 1(1): 7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-28191390

RESUMEN

Micro- and nanostructures with three-dimensional (3D) shapes are needed for a variety of applications in optics and fluidics where structures with both smooth and sharp features enhance the performance and functionality. We present a novel method for the generation of true 3D surfaces based on thermally activated selective topography equilibration (TASTE). This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale. We describe its principal mechanism exemplified by pre-patterned poly (methyl methacrylate) resist which is exposed to high energy electrons prior to a thermal annealing step enabling the selective transformation of stepped contours into smooth surfaces. From this we conclude, that TASTE not only offers an enormous degree of freedom for future process variations, but also will advance the patterning capabilities of current standard 3D micro- and nanofabrication methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA