Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233659

RESUMEN

Rapid real-time PCR (generally <1 h) has broad prospects. In this study, we synthesized a new type of nanomaterial core-shell tecto-dendrimer coated with Au nanoparticles (Au CSTDs) for research in this field. The experimental results showed that Au CSTDs could significantly shorten the time of real-time PCR (from 72 to 28 min) with different templates, while the detection limit reached 10 copies and the nonspecific amplification was significantly reduced. Furthermore, experimental analyses and theoretical studies using the finite element simulation method confirmed that Au CSTDs function by synergistically enhancing electrostatic adsorption and thermal conductivity. These properties play a key role in improving real-time PCR, especially in particle-particle interactions. This study contributes an advanced method to rapid real-time PCR, which is expected to remarkably improve the efficiency, lower the detection limit, and enhance the specificity of molecular detection.

2.
Adv Mater ; : e2404648, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970529

RESUMEN

Flexible and highly thermally conductive materials with consistent thermal conductivity (λ) during large deformation are urgently required to address the heat accumulation in flexible electronics. In this study, spring-like thermal conduction pathways of silver nanowire (S-AgNW) fabricated by 3D printing are compounded with polydimethylsiloxane (PDMS) to prepare S-AgNW/PDMS composites with excellent and consistent λ during deformation. The S-AgNW/PDMS composites exhibit a λ of 7.63 W m-1 K-1 at an AgNW amount of 20 vol%, which is ≈42 times that of PDMS (0.18 W m-1 K-1) and higher than that of AgNW/PDMS composites with the same amount and random dispersion of AgNW (R-AgNW/PDMS) (5.37 W m-1 K-1). Variations in the λ of 20 vol% S-AgNW/PDMS composites are less than 2% under a deformation of 200% elongation, 50% compression, or 180° bending, which benefits from the large deformation characteristics of S-AgNW. The heat-transfer coefficient (0.29 W cm-2 K-1) of 20 vol% S-AgNW/PDMS composites is ≈1.3 times that of the 20 vol% R-AgNW/PDMS composites, which reduces the temperature of a full-stressed central processing unit by 6.8 °C compared to that using the 20 vol% R-AgNW/PDMS composites as a thermally conductive material in the central processing unit.

3.
Small ; : e2403249, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934358

RESUMEN

Sweat passive-cooling textiles with asymmetric wettabilities on different sides offer an effective and low-energy consumption solution to personal thermal management in extreme thermal environments. However, the sweat-wicking and the cooling abilities decrease when the textile is contaminated by low-surface tension oily liquid fouling. The integration of anti-oily liquid fouling and sweat-wicking abilities on textile involves resolving the contradiction between hydrophilic and oleophobic properties and seeking eco-friendly short-chain fluorides to reduce the surface energy. Herein, a sustainable oily liquid-proof passive cooling (SOC) textile for personal thermal management is proposed. The SOC textile is obtained by applying a fluoride-free hydrophobic coating layer to one side of the high thermal conductive superoleophobic/superhydrophilic basal textile, which is fabricated using eco-friendly short-chain fluoride. The SOC textile preserves the anti-oily liquid fouling property even after 2000 abrasion cycles. Experimental test revealed that the SOC textile exhibits a cooling effect of ≈5 °C compared with the cotton textile, and the up to 70% reduction in sweating rate under the constant metabolic heat production rates. The configuration of the SOC textile would inspire the future design of intelligent textiles for personal thermal management, and the proposed strategy have implications for fabrication of eco-friendly oil-water separation materials.

4.
Heliyon ; 10(10): e31575, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831812

RESUMEN

1-3 piezoelectric composites have been widely used in transmitting transducers, medical devices, navigation, aerospace, etc. However, due to poor thermal conduction of inside piezoelectric composites, performance degradation and service life shortening of transmitting transducers are easily caused while working under high-power or continuously operated states. In this paper, a solution is provided by designing and creating highly efficient thermally conductive paths in 1-1-3 piezoelectric composite. This novel design resulted in two-fold increase in heat dissipation rate compared with traditional 1-3 piezoelectric composites, while maintaining high piezoelectric properties. Furthermore, we designed and fabricated an efficient heat dissipation transducer (EHDT) with the novel 1-1-3 piezoelectric composite as the core material, which can relief heat accumulation effectively compared with conventional transducers (CT). The EHDT can achieve three times more power output than the CT at the same temperature threshold of 90 °C.

5.
ACS Nano ; 18(22): 14779-14789, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38783699

RESUMEN

Surface phonon polaritons (SPhPs) originate from the coupling of mid-IR photons and optical phonons, generating evanescent waves along the polar dielectric surface. The emergence of SPhPs gives rise to a phase of quantum matter that facilitates long-range energy transfer (100s µm-scale). Albeit of the recent experimental progress to observe the enhanced thermal conductivity of polar dielectric nanostructures mediated by SPhPs, the potential mechanism to present the high thermal conductivity beyond the Landauer limit has not been addressed. Here, we revisit the comprehensive theoretical framework to unify the distinct pictures of two heat transfer mechanisms by conduction and radiation. We first designed our experimental platform to distinguish contributions of two distinct fundamental modes of SPhPs, resulting in far-field radiation and long propagating conduction, respectively, by tuning the configuration of a nanostructured heat channel integrated into the thermometer. We could effectively control the transmission of long-propagating SPhPs to influence the apparent thermal conductivity of the nanostructure. This study reveals the high thermal conductance of 1.63 nW/K by a fast SPhP mode comparable to that by classical phonons, with measurements showing apparent conductivity values of up to 2 W/m·K at 515 K. The origin of the enhanced thermal conductivity was exploited by observing the interference of dispersive evanescent waves by double heat channels. Furthermore, our experimental observations of length-dependent thermal conductance by SPhPs are in good agreement with the revisited Landauer formula to illustrate a polaritonic mode of heat conduction, considering the dispersive nature of radiation not limited to the physical boundaries of a solid object yet directionally guided along the surface.

6.
ACS Nano ; 18(15): 10557-10565, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38575375

RESUMEN

Nanostructured semiconductors promise functional thermal management for microelectronics and thermoelectrics through a rich design capability. However, experimental studies on anisotropic in-plane thermal conduction remain limited, despite the demand for directional heat dissipation. Here, inspired by an oriental wave pattern, a periodic network of bent wires, we investigate anisotropic in-plane thermal conduction in nanoscale silicon phononic crystals with the thermally dead volume. We observed the anisotropy reversal of the material thermal conductivity from 1.2 at 300 K to 0.8 at 4 K, with the reversal temperature of 80 K mediated by the transition from a diffusive to a quasi-ballistic regime. Our Monte Carlo simulations revealed that the backflow of the directional phonons induces the anisotropy reversal, showing that the quasi-ballistic phonon transport introduces preferential thermal conduction channels with anomalous temperature dependence. Accordingly, the anisotropy of the effective thermal conductivity varied from 2.7 to 5.0 in the range of 4-300 K, indicating an anisotropic heat manipulation capability. Our findings demonstrate that the design of nanowire networks enables the directional thermal management of electronic devices.

7.
Heliyon ; 10(5): e26964, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455581

RESUMEN

One of the comprehensive ways of heat transport performance augmentation of thermo-fluid systems is to use nanofluid over base fluid. This study mainly scrutinizes several existing models of thermal conduction coefficient and absolute viscosity of Al2O3-water nanofluid with the experimental data. A benchmark problem of natural convective flow is selected to test the performance of the available nanofluid models. The Rayleigh number varies between 103 and 109, while the solid-volume proportion (φ) changes from 0 to 4%. The governing mathematical model is numerically discretized via the Galerkin finite element procedure under appropriate auxiliary conditions. The results produced by the models are verified with the existing experimental findings based on the evaluation of the Prandtl number and average Nusselt number. It has been confirmed that the AH model (Azmi's viscosity and Ho's conductivity models) is suitable for lower nanoparticle concentration (φ = 0.01), the AM model (Azmi's viscosity and Maxwell's conductivity models) for moderate concentration (0.01 < φ < 0.04), and the NH model (Ngueyn's viscosity and Ho's conductivity models) for higher value of the solid-volume proportion (φ = 0.04).

8.
Small Methods ; 8(8): e2301334, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38528378

RESUMEN

The 2D materials exhibit numerous technological applications, but their scalable production is a core challenge. Herein, ball milling exfoliation in supercritical carbon dioxide (scCO2) and polystyrene (PS) is demonstrated to completely exfoliate hexagonal boron nitride nanosheets (BNNSs), graphene, molybdenum disulfide (MoS2), and tungsten disulfide (WS2). The exfoliation yield of 91%, 93%, 92%, and 92% and average aspect ratios of 743, 565, 564, and 502 for BNNSs, graphene, MoS2, and WS2, respectively, are achieved. Integrating exfoliated BNNSS in the polystyrene matrix, 3768 % thermal conductivity in the axial direction and 316% in the cross-plane direction at 12 wt.% loading is increased. Also, the in-plane and cross-plane electrical conductivity of 6.3 × 10-4 S m-1 and 6.6 × 10-3 S m-1, respectively, and the electromagnetic interference (EMI) of 63.3 dB is achieved by exfoliated graphene nanosheets based composite. High thermal and electrical conductivities and EMI shielding are attributed to the high aspect ratio and ultrathin morphology of the exfoliated nanosheets, which exert high charge mobility and form better the percolation network in the composite films due to their high surface area. The process demonstrate herein can produce substantial quantities of diverse 2D nanosheets for widespread commercial utilization.

9.
J Phys Condens Matter ; 36(24)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457837

RESUMEN

Optimization of heat transfer at the nanoscale is necessary for efficient modern technology applications in nanoelectronics, energy conversion, and quantum technologies. In such applications, phonons dominate thermal transport and optimal performance requires minimum phonon conduction. Coherent phonon conduction is minimized by maximum disorder in the aperiodic modulation profile of width-modulated nanowaveguides, according to a physics rule. It is minimized for moderate disorder against physics intuition in composite nanostructures. Such counter behaviors call for a better understanding of the optimization of phonon transport in non-uniform nanostructures. We have explored mechanisms underlying the optimization of width-modulated nanowaveguides with calculations and machine learning, and we report on generic behavior. We show that the distribution of the thermal conductance among the aperiodic width-modulation configurations is controlled by the modulation degree irrespective of choices of constituent material, width-modulation-geometry, and composition constraints. The efficiency of Bayesian optimization is evaluated against increasing temperature and sample size. It is found that it decreases with increasing temperature due to thermal broadening of the thermal conductance distribution. It shows weak dependence on temperature in samples with high discreteness in the distribution spectrum. Our work provides new physics insight and indicates research pathways to optimize heat transfer in non-uniform nanostructures.

10.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392704

RESUMEN

With the integration and miniaturization of chips, there is an increasing demand for improved heat dissipation. However, the low thermal conductivity (TC) of polymers, which are commonly used in chip packaging, has seriously limited the development of chips. To address this limitation, researchers have recently shown considerable interest in incorporating high-TC fillers into polymers to fabricate thermally conductive composites. Hexagonal boron nitride (h-BN) has emerged as a promising filler candidate due to its high-TC and excellent electrical insulation. This review comprehensively outlines the design strategies for using h-BN as a high-TC filler and covers intrinsic TC and morphology effects, functionalization methods, and the construction of three-dimensional (3D) thermal conduction networks. Additionally, it introduces some experimental TC measurement techniques of composites and theoretical computational simulations for composite design. Finally, the review summarizes some effective strategies and possible challenges for the design of h-BN fillers. This review provides researchers in the field of thermally conductive polymeric composites with a comprehensive understanding of thermal conduction and constructive guidance on h-BN design.

11.
Adv Mater ; 36(5): e2305791, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37869962

RESUMEN

Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.

12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1021527

RESUMEN

BACKGROUND:Clinical studies have found good analgesic effects of silver needle-thermal conduction therapy in patients with myofascial pain syndrome,but the exact mechanism remains unclear. OBJECTIVE:To observe the effect of silver needle-thermal conduction therapy on silent information regulator homolog 3(SIRT3)changes and mitochondrial ultrastructure in a rat model of myofascial pain syndrome. METHODS:Twenty rats were randomly selected from 26 Sprague-Dawley rats and were subjected to percussion combined with motor fatigue for replicating the rat model of myofascial pain syndrome.Sixteen rats that were successfully modeled were randomly divided into model group and silver needle-thermal conduction therapy group(treatment group),with eight rats in each group.The remaining rats were used as controls(normal group).The treatment group was treated with silver needle-thermal conduction therapy.Mechanical withdrawal threshold and thermal withdrawal latency of rats were measured at 1 day before modeling,1 day after modeling and 14 days after treatment.Electromyographic activities of the right medial femoral muscle were measured at 14 days after treatment.The right medial femoral muscle tissue was taken for hematoxylin-eosin staining to observe the local morphology and for transmission electron microscopy to observe the mitochondrial ultrastructure.Western blot assay was performed to detect SIRT3 expression. RESULTS AND CONCLUSION:Pain threshold:The mechanical withdrawal threshold and thermal withdrawal latency of the model and treatment groups were significantly decreased compared with those in the normal group and before modeling(P<0.01).After treatment,the mechanical withdrawal threshold and thermal withdrawal latency of rats were significantly higher in the treatment group compared with the model group(P<0.01).Electromyography:The rats in the model group showed spontaneous electrical activity in the right medial femur,while the rats in the treatment group showed reduced spontaneous electrical activity,longer time frame(P<0.01)and lower wave amplitude(P<0.05)compared with the model group.Hematoxylin-eosin staining:In the normal group,rat muscle fibers arranged closely and regularly.In the model group,the muscle fibers of rats were atrophied,degenerated,and disordered in arrangement.In the treatment group,rat muscle structure disorder improved.Mitochondrial microstructure:Under the transmission electron microscope,mitochondrial structure in the normal group was normal;mitochondrial swelling with broken or disappeared cristae appeared in the model group;mitochondrial swelling in the treatment group was obviously relieved or tended to be normal.SIRT3 expression:SIRT3 expression was significantly downregulated in the model group compared with the normal group,but was significantly upregulated in the treatment group compared with the model group(P<0.05).To conclude,abnormalities in local muscle mitochondria and downregulation of SIRT3 expression suggest the presence of impaired energy metabolism in the rat model of myofascial pain syndrome.Mitochondrial changes recover and are close to normal after the silver needle-thermal conduction therapy,and the expression of SIRT3 is also upregulated close to the normal group,indicating the silver needle-thermal conduction therapy may play a therapeutic role by promoting mitochondrial repair and improving energy metabolism disorder.

13.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138347

RESUMEN

Maximizing thermoelectric efficiency is typically addressed as identical to minimizing parasitic thermal conduction. Such an approach relies on the assumption that the adopted strategy mainly affects phonons, leaving electrons intact, and is not justified in many cases of non-uniform nanostructures such as width-modulated nanowaveguides, where both electrons and phonons are significantly affected by width modulation. Here, we address the question of maximizing the thermoelectric efficiency of this class of metamaterials by exploring the effect of the modulation extent on both electron and phonon transport. We investigated the effect of increasing modulation degree on the thermoelectric efficiency, considering the cases of (a) a two-QD modulation and (b) multiple-QD modulations in periodic and aperiodic sequences. We show that the thermoelectric efficiency depends on the coupling between the modulation units and the interplay between periodicity and aperiodicity in the modulation profile. We reveal that the maximization of the thermoelectric power factor is for periodic width-modulation, whereas the maximization of the thermoelectric efficiency is for aperiodic width-modulation profiles that form quasi-localized states for electrons. Our work provides new insight that can be used to optimize width modulation for maximum thermoelectric efficiency.

14.
Materials (Basel) ; 16(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138659

RESUMEN

A multifunctional microwave absorber with high thermal conductivity for 5G base station packaging comprising silylated GO/FeSiAl epoxy composites were fabricated by a simple solvent-handling method, and its microwave absorption properties and thermal conductivity were presented. It could act as an applicable microwave absorber for highly integrated 5G base station packaging with 5G antennas within a range of operating frequency of 2.575-2.645 GHz at a small thickness (2 mm), as evident from reflection loss with a maximum of -48.28 dB and an effective range of 3.6 GHz. Such a prominent microwave absorbing performance results from interfacial polarization resonance attributed to a nicely formed GO/FeSiAl interface through silylation. It also exhibits a significant enhanced thermal conductivity of 1.6 W/(mK) by constructing successive thermal channels.

15.
ACS Appl Mater Interfaces ; 15(23): 28626-28635, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276584

RESUMEN

The application of high-performance thermal interface materials (TIMs) for thermal management is commonly used to tackle the problem of heat accumulation, which influences the performance and reliability of microelectronic devices. Herein, a novel three-dimensional (3D) carbon nitride nanosheet (CNNS)/epoxy composite with high thermal conductivity was developed by introducing 3D CNNS skeleton fillers prepared by a facile and scalable strategy assisted by a salt template. Benefiting from the continuous heat transfer pathways formed in the CNNS skeleton, 17.0 wt % 3D CNNS/epoxy composites achieve a superior thermal conductivity of 1.27 W/m·K, which is 6.35 and 1.57 times higher than those of epoxy resin and convention CNNS/epoxy, respectively. With the aid of theoretical model analysis and finite element simulation, the pronounced enhancement effect of the 3D CNNS skeleton on the thermal conductivity of epoxy composites is found to be attributed to the continuous 3D CNNS thermally conductive network, the diminished CNNS-CNNS interfacial thermal resistance, and the effective interfacial interactions between epoxy and CNNS. In addition, the 3D CNNS/epoxy composites possess high electrical insulation and desirable mechanical strength. Therefore, 3D CNNS/epoxy composites are promising TIMs for advanced electronic thermal management.

16.
Sci Bull (Beijing) ; 68(11): 1195-1212, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37179235

RESUMEN

Polymer composites have essential applications in electronics due to their versatility, stable performance, and processability. However, with the increasing miniaturization and high power of electronics in the 5G era, there are significant challenges related to heat accumulation and electromagnetic wave (EMW) radiation in narrow spaces. Traditional solutions involve using either thermally conductive or EMW absorbing polymer composites, but these fail to meet the demand for multi-functional integrated materials in electronics. Therefore, designing thermal conduction and EMW absorption integrated polymer composites has become essential to solve the problems of heat accumulation and electromagnetic pollution in electronics and adapt to its development trend. Researchers have developed different approaches to fabricate thermal conduction and EMW absorption integrated polymer composites, including integrating functional fillers with both thermal conduction and EMW absorption functions and innovating processing methods. This review summarizes the latest research progress, factors that affect performance, and the mechanisms of thermal conduction and EMW absorption integrated polymer composites. The review also discusses problems that limit the development of these composites and potential solutions and development directions. The aim of this review is to provide references for the development of thermal conduction and EMW absorption integrated polymer composites.


Asunto(s)
Absorción de Radiación , Electrónica , Conductividad Eléctrica , Polímeros , Radiación Electromagnética
17.
Macromol Rapid Commun ; 44(13): e2300060, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37014631

RESUMEN

Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high-λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.


Asunto(s)
Electrónica , Cristales Líquidos , Conductividad Eléctrica , Calor , Conductividad Térmica
18.
J Mol Graph Model ; 122: 108499, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116335

RESUMEN

In this research, the thermoelectric properties of the (6, 6) two sided-closed single-walled boron nitride nanotube ((6, 6) TSC-SWBNNT) was investigated in the state without impurity and carbon atom impurity instead of boron and nitrogen atoms in the center, left, and right the nanotube. The test conditions were the energy range of -5.5 to 5.5 eV and temperatures of 200, 300, 500, 700, 900, 1100, and 1300 K. Based on the obtained results, with an increase in temperature and the creation of impurities, the band gap is affected and becomes noticeably smaller. At the temperature of 1300 K, the band gap shows the greatest decrease and the peak height shows the least decrease. With increasing temperature, the number of peaks has decreased, suggesting an increase in the mobility of electrons and holes and a decrease in their localization. The Seebeck coefficient figures also changed by replacing carbon atoms with boron and nitrogen atoms in different parts of the nanotube. In addition, the height of the heat conduction peaks increased with increasing temperature. However, the heat conduction values are generally in the range of 9-10 nm, which are small values. With the increase in temperature, ZT values increased such that the highest values corresponded to the temperature of 1300 K. The ZT values higher than 1, especially at high temperatures, show that (6, 6) TSC-SWBNNT nanotubes are suitable candidates for thermoelectric materials.


Asunto(s)
Carbono , Nanotubos , Temperatura , Boro
19.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050666

RESUMEN

A new type of interface using a conduction hot spot reflecting the user's intention is presented. Conventional methods using fingertips to generate conduction hot points cannot be applied to those who have difficulty using their hands or cold hands. In order to overcome this problem, an exhaling interaction using a hollow rod is proposed and extensively analyzed in this paper. A preliminary study on exhaling interaction demonstrated the possibility of the method. This paper is an attempt to develop and extend the concept and provide the necessary information for properly implementing the interaction method. We have repeatedly performed conduction hot-point-generation experiments on various materials that can replace walls or screens to make wide use of the proposed interfaces. Furthermore, a lot of experiments have been conducted in different seasons, considering that the surface temperature of objects also changes depending on the season. Based on the results of an extensive amount of experiments, we provide key observations on important factors such as material, season, and user condition, which should be considered for realizing contactless exhaling interfaces.

20.
Artículo en Inglés | MEDLINE | ID: mdl-36900952

RESUMEN

A qualitative study of thermal transfers is carried out from a record of measurements (time series) of meteorological variables (temperature, relative humidity and magnitude of wind speeds) and pollutants (PM10, PM2.5 and CO) in six localities located at different heights in the geographic basin of Santiago de Chile. The measurements were made in two periods, 2010-2013 and 2017-2020 (a total of 2,049,336 data), the last period coinciding with a process of intense urbanization, especially high-rise construction. The measurements, in the form of hourly time series, are analyzed on the one hand according to the theory of thermal conduction discretizing the differential equation of the temporal variation in the temperature and, on the other hand, through the theory of chaos that provides the entropies (S). Both procedures demonstrate, comparatively, that the last period of intense urbanization presents an increase in thermal transfers and temperature, which affects urban meteorology and makes it more complex. As shown by the chaotic analysis, there is a faster loss of information for the period 2017-2020. The consequences of the increase in temperature on human health and learning processes are studied.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Temperatura , Urbanización , Material Particulado/análisis , Meteorología , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Estaciones del Año , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA