Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189087, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38395237

RESUMEN

Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.


Asunto(s)
Actinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Cancer Lett ; 582: 216512, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036043

RESUMEN

Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Metabolismo de los Lípidos , Mama/patología , Lípidos , Microambiente Tumoral
3.
Lasers Med Sci ; 38(1): 251, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37919479

RESUMEN

Despite significant efforts to control cancer progression and to improve oncology treatment outcomes, recurrence and tumor resistance are frequently observed in cancer patients. These problems are partly related to the presence of cancer stem cells (CSCs). Photodynamic therapy (PDT) has been developed as a therapeutic approach for solid tumors; however, it remains unclear how this therapy can affect CSCs. In this review, we focus on the effects of PDT on CSCs and the possible changes in the CSC population after PDT exposure. Tumor response to PDT varies according to the photosensitizer and light parameters employed, but most studies have reported the successful elimination of CSCs after PDT. However, some studies have reported that CSCs were more resistant to PDT than non-CSCs due to the increased efflux of photosensitizer molecules and the action of autophagy. Additionally, using different PDT approaches to target the CSCs resulted in increased sensitivity, reduction of sphere formation, invasiveness, stem cell phenotype, and improved response to chemotherapy. Lastly, although mainly limited to in vitro studies, PDT, combined with targeted therapies and/or chemotherapy, could successfully target CSCs in different solid tumors and promote the reduction of stemness, suggesting a promising therapeutic approach requiring evaluation in robust pre-clinical studies.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fotoquimioterapia/métodos , Células Madre Neoplásicas
4.
Immunotherapy ; 15(17): 1477-1495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37822251

RESUMEN

Since HIV was identified as the etiological agent of AIDS, there have been significant advances in antiretroviral therapy (ART) that has reduced morbidity/mortality. Still, the viral genome's high mutation rate, suboptimal ART regimens, incomplete adherence to therapy and poor control of the viral load generate variants resistant to multiple drugs. Licensing over 30 anti-HIV drugs worldwide, including integrase inhibitors, has marked a milestone since they are potent and well-tolerated drugs. In addition, they favor a faster recovery of CD4+ T cells. They also increase the diversity profile of the gut microbiota and reduce inflammatory markers. All of these highlight the importance of including them in different ART regimens.


Research on HIV/AIDS has been focused on finding ways to prevent or cure the disease. One important class of drugs called integrase inhibitors has gained attention. These drugs are effective and have been widely used in the past decade to treat HIV. Integrase inhibitors help in the recovery of immune cells and improve the diversity of gut bacteria while reducing inflammation. It is important to include these drugs in treatment regimens for people living with HIV.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Inhibidores de Integrasa/uso terapéutico , Infecciones por VIH/tratamiento farmacológico
5.
J Med Case Rep ; 17(1): 407, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37743480

RESUMEN

BACKGROUND: The BRCA2 gene is a well-known tumor suppressor gene implicated in breast and ovarian cancers. BRCA1/2 mutations can be sensitive to poly ADP-ribose polymerase (PARP) inhibitors such as olaparib. However, some of these patients develop resistance to this treatment and an essential factor contributing to acquired insensitivity is the occurrence of reversion mutations in the BRCA1/2 genes. CASE PRESENTATION: We report the case of a 65-year-old Brazilian female patient who had previously been diagnosed with metastatic lung carcinoma carrying a BRCA2 mutation that had extended to the central nervous system. Following disease progression, olaparib was administered, resulting in a stabilizing effect on her condition for ~ 30 months. During a routine follow-up, a new triple-negative breast tumor was found. Genetic testing revealed the presence of two distinct BRCA2 gene mutations in the breast tumor. The original mutation (p.Val220Ilefs4) led to a frameshift, culminating in the production of a truncated and non-functional BRCA2 protein; the second mutation, K437fs22, rectified the reading frame of exon 11. Consequently, Rad51 could properly bind to BRCA2-an essential protein crucial for DNA repair. This restoration resulted in a functional BRCA2 protein, effectively elucidating the clinical resistance observed in the new breast tumor in this case. CONCLUSIONS: This case report highlights the clinical significance of comprehensive next-generation sequencing analyses for lung adenocarcinomas, both at diagnosis and upon progression. Such analyses enable informed decisions regarding targeted therapies and facilitate a deeper comprehension of resistance mechanisms.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Anciano , Proteína BRCA2/genética , Proteína BRCA1 , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
6.
Noncoding RNA ; 9(5)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37736901

RESUMEN

Circular RNAs (circRNAs) are single-stranded closed non-coding RNA molecules that are aberrantly expressed and produce tumor-specific gene signatures in human cancers. They exert biological functions by acting as transcriptional regulators, microRNA sponges, and protein scaffolds, regulating the formation of protein-RNA complexes and, ultimately, regulating gene expression. Triple-negative breast cancer (TNBC) is one of the most aggressive cancers of the mammary gland and has a poor prognosis. Studies of circRNAs in TNBC are limited but have demonstrated these molecules' pivotal roles in cell proliferation, invasion, metastasis, and resistance to chemo/radiotherapy, suggesting that they could be potential prognostic biomarkers and novel therapeutic targets. Here, we reviewed the status of actual knowledge about circRNA biogenesis and functions and summarized novel findings regarding their roles in TNBC development and progression. In addition, we discussed recent data about the importance of exosomes in the transport and export of circRNAs in TNBC. Deep knowledge of circRNA functions in metastasis and therapy responses could be an invaluable guide in the identification of novel therapeutic targets for advancing the treatment of TNBC.

7.
Cancer Drug Resist ; 6(1): 116-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065869

RESUMEN

Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome therapy failure.

8.
Front Oncol ; 12: 897205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646668

RESUMEN

Advances in our understanding of cancer biology have contributed to generating different treatments to improve the survival of cancer patients. However, although initially most of the therapies are effective, relapse and recurrence occur in a large percentage of these cases after the treatment, and patients then die subsequently due to the development of therapy resistance in residual cancer cells. A large spectrum of molecular and cellular mechanisms have been identified as important contributors to therapy resistance, and more recently the inflammatory tumor microenvironment (TME) has been ascribed an important function as a source of signals generated by the TME that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Currently, extracellular vesicles (EVs) are considered one of the main means of communication between cells of the TME and have emerged as crucial modulators of cancer drug resistance. Important in this context is, also, the inflammatory TME that can be caused by several conditions, including hypoxia and following chemotherapy, among others. These inflammatory conditions modulate the release and composition of EVs within the TME, which in turn alters the responses of the tumor cells to cancer therapies. The TME has been ascribed an important function as a source of signals that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Although generally the main cellular components considered to participate in generating a pro-inflammatory TME are from the immune system (for instance, macrophages), more recently other types of cells of the TME have also been shown to participate in this process, including adipocytes, cancer-associated fibroblasts, endothelial cells, cancer stem cells, as well as the tumor cells. In this review, we focus on summarizing available information relating to the impact of a pro-inflammatory tumor microenvironment on the release of EVs derived from both cancer cells and cells of the TME, and how these EVs contribute to resistance to cancer therapies.

9.
BMC Cancer ; 21(1): 652, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074257

RESUMEN

BACKGROUND: Even though targeted therapies are available for cancers expressing oncogenic epidermal growth receptor (EGFR) and (or) human EGFR2 (HER2), acquired or intrinsic resistance often confounds therapy success. Common mechanisms of therapy resistance involve activating receptor point mutations and (or) upregulation of signaling downstream of EGFR/HER2 to Akt and (or) mitogen activated protein kinase (MAPK) pathways. However, additional pathways of resistance may exist thus, confounding successful therapy. METHODS: To determine novel mechanisms of EGFR/HER2 therapy resistance in breast cancer, gefitinib or lapatinib resistant variants were created from SKBR3 breast cancer cells. Syngenic therapy sensitive and resistant SKBR3 variants were characterized for mechanisms of resistance by mammosphere assays, viability assays, and western blotting for total and phospho proteins. RESULTS: Gefitinib and lapatinib treatments reduced mammosphere formation in the sensitive cells, but not in the therapy resistant variants, indicating enhanced mesenchymal and cancer stem cell-like characteristics in therapy resistant cells. The therapy resistant variants did not show significant changes in known therapy resistant pathways of AKT and MAPK activities downstream of EGFR/HER2. However, these cells exhibited elevated expression and activation of the small GTPase Rac, which is a pivotal intermediate of GFR signaling in EMT and metastasis. Therefore, the potential of the Rac inhibitors EHop-016 and MBQ-167 to overcome therapy resistance was tested, and found to inhibit viability and induce apoptosis of therapy resistant cells. CONCLUSIONS: Rac inhibition may represent a viable strategy for treatment of EGFR/HER2 targeted therapy resistant breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carbazoles/farmacología , Carbazoles/uso terapéutico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Femenino , Mutación con Ganancia de Función , Gefitinib/farmacología , Gefitinib/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Lapatinib , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación Puntual , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Esferoides Celulares , Regulación hacia Arriba
10.
Cancer Biol Med ; 17(4): 970-985, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33299647

RESUMEN

Objective: Chromosomal instability (CIN) is a hallmark of cancer characterized by cell-to-cell variability in the number or structure of chromosomes, frequently observed in cancer cell populations and is associated with poor prognosis, metastasis, and therapeutic resistance. Breast cancer (BC) is characterized by unstable karyotypes and recent reports have indicated that CIN may influence the response of BC to chemotherapy regimens. However, paradoxical associations between extreme CIN and improved outcome have been observed. Methods: This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC, TAM/DOX, TAM/HT, HT/DOC, and HT/DOX) by using fluorescence in situ hybridization (FISH), and 2) examine the association with response to treatments by comparing FISH results with cell proliferation. Results: Intermediate CIN was linked to drug sensitivity according to three characteristics: estrogen receptor α (ERα) and HER2 status, pre-existing CIN level in cancer cells, and the CIN induced by the treatments. ERα+/HER2- cells with intermediate CIN were sensitive to treatment with taxanes (DOC) and anthracyclines (DOX), while ERα-/HER2-, ERα+/HER2+, and ERα-/HER2+ cells with intermediate CIN were resistant to these treatments. Conclusions: A greater understanding of CIN and CH in BC could assist in the optimization of existing therapeutic regimens and/or in supporting new strategies to improve cancer outcomes.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/genética , Inestabilidad Cromosómica , Receptores de Estrógenos/metabolismo , Antraciclinas/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , Receptor ErbB-2/metabolismo , Taxoides/administración & dosificación
11.
Front Oncol ; 10: 578418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117715

RESUMEN

During tumorigenesis, cancer cells are exposed to a wide variety of intrinsic and extrinsic stresses that challenge homeostasis and growth. Cancer cells display activation of distinct mechanisms for adaptation and growth even in the presence of stress. Autophagy is a catabolic mechanism that aides in the degradation of damaged intracellular material and metabolite recycling. This activity helps meet metabolic needs during nutrient deprivation, genotoxic stress, growth factor withdrawal and hypoxia. However, autophagy plays a paradoxical role in tumorigenesis, depending on the stage of tumor development. Early in tumorigenesis, autophagy is a tumor suppressor via degradation of potentially oncogenic molecules. However, in advanced stages, autophagy promotes the survival of tumor cells by ameliorating stress in the microenvironment. These roles of autophagy are intricate due to their interconnection with other distinct cellular pathways. In this review, we present a broad view of the participation of autophagy in distinct phases of tumor development. Moreover, autophagy participation in important cellular processes such as cell death, metabolic reprogramming, metastasis, immune evasion and treatment resistance that all contribute to tumor development, is reviewed. Finally, the contribution of the hypoxic and nutrient deficient tumor microenvironment in regulation of autophagy and these hallmarks for the development of more aggressive tumors is discussed.

12.
Cells ; 9(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545155

RESUMEN

Tumor microenvironment (TME) is composed of different cellular populations, such as stromal, immune, endothelial, and cancer stem cells. TME represents a key factor for tumor heterogeneity maintenance, tumor progression, and drug resistance. The transport of molecules via extracellular vesicles emerged as a key messenger in intercellular communication in the TME. Exosomes are small double-layered lipid extracellular vesicles that can carry a variety of molecules, including proteins, lipids, and nucleic acids. Exosomal miRNA released by cancer cells can mediate phenotypical changes in the cells of TME to promote tumor growth and therapy resistance, for example, fibroblast- and macrophages-induced differentiation. Cancer stem cells can transfer and enhance drug resistance in neighboring sensitive cancer cells by releasing exosomal miRNAs that target antiapoptotic and immune-suppressive pathways. Exosomes induce drug resistance by carrying ABC transporters, which export chemotherapeutic agents out of the recipient cells, thereby reducing the drug concentration to suboptimal levels. Exosome biogenesis inhibitors represent a promising adjunct therapeutic approach in cancer therapy to avoid the acquisition of a resistant phenotype. In conclusion, exosomal miRNAs play a crucial role in the TME to confer drug resistance and survivability to tumor cells, and we also highlight the need for further investigations in this promising field.


Asunto(s)
Resistencia a Antineoplásicos/genética , Exosomas/metabolismo , MicroARNs/metabolismo , Microambiente Tumoral/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Autofagia/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Exosomas/efectos de los fármacos , Humanos , MicroARNs/genética , Microambiente Tumoral/efectos de los fármacos
13.
Front Oncol ; 9: 974, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31612112

RESUMEN

Purpose: Intratumoral genetic heterogeneity (ITGH) is a common feature of solid tumors. However, little is known about the effect of neoadjuvant chemoradiation (nCRT) in ITGH of rectal tumors that exhibit poor response to nCRT. Here, we examined the impact of nCRT in the mutational profile and ITGH of rectal tumors and its adjacent irradiated normal mucosa in the setting of incomplete response to nCRT. Methods and Materials: To evaluate ITGH in rectal tumors, we analyzed whole-exome sequencing (WES) data from 79 tumors obtained from The Cancer Genome Atlas (TCGA). We also compared matched peripheral blood cells, irradiated normal rectal mucosa and pre and post-treatment tumor samples (PRE-T and POS-T) from one individual to examine the iatrogenic effects of nCRT. Finally, we performed WES of 7 PRE-T/POST-T matched samples to examine how nCRT affects ITGH. ITGH was assessed by quantifying subclonal mutations within individual tumors using the Mutant-Allele Tumor Heterogeneity score (MATH score). Results: Rectal tumors exhibit remarkable ITGH that is ultimately associated with disease stage (MATH score stage I/II 35.54 vs. stage III/IV 44.39, p = 0.047) and lymph node metastasis (MATH score N0 35.87 vs. N+ 45.79, p = 0.026). We also showed that nCRT does not seem to introduce detectable somatic mutations in the irradiated mucosa. Comparison of PRE-T and POST-T matched samples revealed a significant increase in ITGH in 5 out 7 patients and MATH scores were significantly higher after nCRT (median 41.7 vs. 28.8, p = 0.04). Finally, we were able to identify a subset of "enriched mutations" with significant changes in MAFs between PRE-T and POST-T samples. These "enriched mutations" were significantly more frequent in POST-T compared to PRE-T samples (92.9% vs. 7.1% p < 0.00001) and include mutations in genes associated with genetic instability and drug resistance in colorectal cancer, indicating the expansion of tumor cell subpopulations more prone to resist to nCRT. Conclusions: nCRT increases ITGH and may result in the expansion of resistant tumor cell populations in residual tumors. The risk of introducing relevant somatic mutations in the adjacent mucosa is minimal but non-responsive tumors may have potentially worse biological behavior when compared to their untreated counterparts. This was an exploratory study, and due to the limited number of samples analyzed, our results need to be validated in larger cohorts.

14.
J Mol Med (Berl) ; 97(6): 855-869, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30968159

RESUMEN

Rectal cancer represents one third of the colorectal cancers that are diagnosed. Neoadjuvant chemoradiation is a well-established protocol for rectal cancer treatment reducing the risk of local recurrence. However, a pathologic complete response is only achieved in 10-40% of cases and the mechanisms associated with resistance are poorly understood. To identify potential targets for preventing therapy resistance, a proteomic analysis of biopsy specimens collected from stage II and III rectal adenocarcinoma patients before neoadjuvant treatment was performed and compared with residual tumor tissues removed by surgery after neoadjuvant therapy. Three proteins, Ku70, Ku80, and Rab5C, exhibited a significant increase in expression after chemoradiation. To better understand the role of these proteins in therapy resistance, a rectal adenocarcinoma cell line was irradiated to generate a radiotherapy-resistant lineage. These cells overexpressed the same three proteins identified in the tissue samples. Furthermore, radiotherapy resistance in this in vitro model was found to involve modulation of epidermal growth factor receptor (EGFR) internalization by Rab5C in response to irradiation, affecting expression of the DNA repair proteins, Ku70 and Ku80, and cell resistance. Taken together, these findings indicate that EGFR and Rab5C are potential targets for the sensitization of rectal cancer cells and they should be further investigated. KEY MESSAGES: • Rab5C orchestrates a mechanism of radioresistance in rectal adenocarcinoma cell. • Rab5C modulates EGFR internalization and its relocalization to the nucleus. • In the nucleus, EGFR can modulate the expression of the DNA repair proteins, Ku70 and Ku80. • Rab5C, Ku70, and Ku80 are overexpressed in tumor tissues that contain tumor cells that are resistant to chemoradiation treatment.


Asunto(s)
Tolerancia a Radiación/efectos de la radiación , Radiación Ionizante , Neoplasias del Recto/metabolismo , Neoplasias del Recto/radioterapia , Proteínas de Unión al GTP rab5/metabolismo , Línea Celular Tumoral , Quimioradioterapia , Endocitosis/efectos de la radiación , Receptores ErbB/metabolismo , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias del Recto/patología
16.
Cancers (Basel) ; 10(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060597

RESUMEN

The tumor suppressor p53 is a transcriptional factor broadly mutated in cancer. Most inactivating and gain of function mutations disrupt the sequence-specific DNA binding domain, which activates target genes. This is perhaps the main reason why most research has focused on the relevance of such transcriptional activity for the prevention or elimination of cancer cells. Notwithstanding, transcriptional regulation may not be the only mechanism underlying its role in tumor suppression and therapeutic responses. In the past, a direct role of p53 in DNA repair transactions that include the regulation of homologous recombination has been suggested. More recently, the localization of p53 at replication forks has been demonstrated and the effect of p53 on nascent DNA elongation has been explored. While some data sets indicate that the regulation of ongoing replication forks by p53 may be mediated by p53 targets such as MDM2 (murine double minute 2) and polymerase (POL) eta other evidences demonstrate that p53 is capable of controlling DNA replication by directly interacting with the replisome and altering its composition. In addition to discussing such findings, this review will also analyze the impact that p53-mediated control of ongoing DNA replication has on treatment responses and tumor suppressor abilities of this important anti-oncogene.

17.
Oncotarget ; 6(12): 9679-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25991665

RESUMEN

BACKGROUND: Ameloblastoma is a locally invasive neoplasm often associated with morbidity and facial deformities, showing increased Epidermal Growth Factor Receptor (EGFR) expression. Inhibition of EGFR was suggested as a treatment option for a subset of ameloblastomas. However, there are resistance mechanisms that impair anti-EGFR therapies. One important resistance mechanism for EGFR-inhibition is the EGFR nuclear localization, which activates genes responsible for its mitogenic effects, such as Cyclin D1. METHODS: We assessed EGFR nuclear localization in encapsulated (unicystic, n = 3) and infiltrative (multicystic, n = 11) ameloblastomas and its colocalization with Cyclin D1 by using anti-EGFR and anti-lamin B1 double labeling immunofluorescence analyzed by confocal microscopy. Oral inflammatory fibrous hyperplasia and oral squamous cell carcinoma samples were used for comparison. RESULTS: Twelve cases of ameloblastoma exhibited nuclear EGFR colocalization with lamin B1. This positive staining was mainly observed in the ameloblast-like cells. The EGFR nuclear localization was also observed in control samples. In addition, nuclear EGFR colocalized with Cyclin D1 in ameloblastomas. CONCLUSIONS: Nuclear EGFR occurs in ameloblastomas in association with Cyclin D1 expression, which is important in terms of tumor biology clarification and raises a concern about anti-EGFR treatment resistance in ameloblastomas.


Asunto(s)
Ameloblastoma/metabolismo , Núcleo Celular/metabolismo , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Maxilomandibulares/metabolismo , Biomarcadores de Tumor , Carcinoma de Células Escamosas/metabolismo , Ciclina D1/metabolismo , Humanos , Inflamación , Lamina Tipo B/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Neoplasias de la Boca/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA