Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37111666

RESUMEN

The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.

2.
Pharmaceutics ; 14(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36559195

RESUMEN

Over the last few years, research on silica nanoparticles has rapidly increased. Particularly on mesoporous silica nanoparticles (MSNs), as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Researchers have explored several routes to conjugate both imaging and therapeutic agents onto MSNs, thus expanding their potential as theranostic platforms, in order to allow for the early diagnosis and treatment of diseases. This review introduces a general overview of recent advances in the field of silica nanoparticles. In particular, the review tackles the fundamental aspects of silicate materials, including a historical presentation to new silicates and then focusing on the key parameters that govern the tailored synthesis of functional MSNs. Finally, the biomedical applications of MSNs are briefly revised, along with their biocompatibility, biodistribution and degradation. This review aims to provide the reader with the tools for a rational design of biocompatible MSNs for their application in the biomedical field. Particular attention is paid to the role that the synthesis conditions have on the physicochemical properties of the resulting MSNs, which, in turn, will determine their pharmacological behavior. Several recent examples are highlighted to stress the potential that MSNs hold as drug delivery systems, for biomedical imaging, as vaccine adjuvants and as theragnostic agents.

3.
Front Endocrinol (Lausanne) ; 13: 957172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339441

RESUMEN

Purpose: Targeted radionuclide therapy (TRT) with [131I]MIBG and [177Lu]Lu-DOTA-TATE is an alternative treatment to the classic schemes in slow progressive metastatic/inoperable paraganglioma (PGL) and pheochromocytoma (PHEO). There is no consensus on which treatment to administer and/or the best sequence in patients who are candidates for both therapies. To clarify these questions, this systematic review assesses the prognostic value of [131I]MIBG and [177Lu]Lu-DOTA-TATE (PRRT-Lu) treatments in terms of progression-free survival (PFS) both globally and considering the primary location. Methods: This review was developed according to the PRISMA Statement with 27 final studies (608 patients). Patient characteristics, treatment procedure, and follow-up criteria were evaluated. In addition, a Bayesian linear regression model weighted according to its sample size and an alternative model, which also included an interaction between the treatment and the proportion of PHEOs, were carried out, adjusted by a Student's t distribution. Results: In linear regression models, [131I]MIBG overall PFS was, on average, 10 months lower when compared with PRRT-Lu. When considering the interaction between treatment responses and the proportion of PHEOs, PRRT-Lu showed remarkably better results in adrenal location. The PFS of PRRT-Lu was longer when the ratio of PHEOs increased, with a decrease in [131I]MIBG PFS by 1.9 months for each 10% increase in the proportion of PHEOs in the sample. Conclusion: Methodology, procedure, and PFS from the different studies are quite heterogeneous. PRRT-Lu showed better results globally and specifically in PHEOs. This fact opens the window to prospective trials comparing or sequencing [131I]MIBG and PRRT-Lu.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/radioterapia , 3-Yodobencilguanidina/uso terapéutico , Teorema de Bayes , Estudios Prospectivos , Radiofármacos/uso terapéutico , Paraganglioma/radioterapia , Neoplasias de las Glándulas Suprarrenales/radioterapia , Radioisótopos de Yodo
4.
J Biophotonics ; 14(10): e202100099, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34241969

RESUMEN

This study reports on the development and application of theragnostic agents targeting the HER2 receptors in breast tumors. The agent was constructed by loading silica-coated gold nanorods (GNRs) and a perfluorohexane liquid into PLGA-PEG nanoparticles, followed by surface conjugation with antibody Herceptin. The particle uptake in human breast cancer MDA-MB-231 (HER2-negative) and BT474 (HER2-positive) cell lines was tested. A proof of principle in vivo study was also performed using a xenograft mouse bilateral tumor model (16 mice, 32 tumors). Photoacoustic imaging was performed using a VevoLAZR device at 720/750/850 nm illuminations and 21 MHz central frequency. The relative concentrations of GNRs in the tumor were quantified using a linear spectral unmixing technique. The therapeutic efficacy of these nanoparticles was evaluated through optical droplet vaporization, and cell damage was confirmed using tissue immunofluorescence and histology. Our results demonstrate the potential of PLGA-GNRs as theragnostic agents for anti-HER2 breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Técnicas Fotoacústicas , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Rayos Láser , Ratones , Volatilización
5.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525717

RESUMEN

Functionalized gold nanoparticles (AuNPs) have been successfully used in many fields as a result of having low cytotoxicity, good biocompatibility, excellent optical properties, and their ability to target cancer cells. Here, we synthesized AuNP carriers that were modified by hyaluronic acid (HA), polyethylene glycol (PEG), and adipic dihydrazide (ADH). The antitumor drug doxorubicin (Dox) was loaded into AuNP carriers and attached chemically. The Au nanocomposite AuNPs@MPA-PEG-HA-ADH-Dox was able to disperse uniformly in aqueous solution, with a diameter of 15 nm. The results of a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that AuNP carriers displayed very little toxicity toward cells in high doses, although the antitumor properties of Au nanocomposites were significantly enhanced. Cellular uptake experiments demonstrated that AuNPs modified with hyaluronic acid were more readily ingested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A series of experiments measuring apoptosis such as Rh123 and annexin V-FITC staining, and analysis of mitochondrial membrane potential (MMP) analysis, indicated that apoptosis played a role in the inhibition of cell proliferation by AuNPs@MPA-PEG-HA-ADH-Dox. Excessive production of reactive oxygen species (ROS) was the principal mechanism by which the Au nanocomposites inhibited cell proliferation, leading to apoptosis. Thus, the Au nanocomposites, which allowed cell imaging in real-time and induced apoptosis in specific cell types, represent theragnostic agents with potential for future clinical applications in bowel cancer.

6.
Bioorg Chem ; 99: 103834, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32334193

RESUMEN

Fluorine is a unique atom that imparts distinct properties to bioactive molecules upon incorporation. Herein, we prepare and study fluorinated derivatives of the nanomolar affine peripherally restricted dual CB1R/CB2R agonist; CRA13 and its analogs. Binding affinity evaluation relative to CRA13 proved the stronger binding affinity of compound 7c to CB1R and CB2R by 6.95 and 5.64 folds. Physicochemical properties evaluation proved compound 7c improved lipophilicity profile suggesting some enhanced BBB penetration relative to CRA13. Radiosynthesis of 18F-labeled compound 7c was conducted conveniently affording pure hot ligand. In vivo PET study investigation demonstrated efficient distribution of 18F-labeled compound 7c in peripheral tissues visualizing peripheral CB1R/CB2R generating time-activity-curves showing good standard uptake values. Despite enhanced BBB penetration and increased cannabinoid receptors binding affinity, low brain uptake of 7c was observed. In silico docking study explained the measured binding affinities of compounds 7a-d to CB1R. While most of previous efforts aimed to develop central cannabinoid PET imaging agents, 18F-labeled compound 7c might be a promising agent serving as a universal CB1R/CB2R PET imaging agents for diagnosis and therapy of various diseases correlated with peripheral cannabinoid system. It might also serve as a lead compound for development of PET imaging of peripheral and central cannabinoid systems.


Asunto(s)
Naftalenos/farmacología , Tomografía de Emisión de Positrones , Radiofármacos/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor , Halogenación , Humanos , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Radiofármacos/síntesis química , Radiofármacos/química , Relación Estructura-Actividad
7.
Curr Drug Deliv ; 15(1): 134-142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28000552

RESUMEN

BACKGROUND: Lipiodol (iodized poppy seed oil) accumulates predominately in the tumor rather than in the liver tissue [1, 2]. Therefore, mixing anticancer drugs with Lipiodol may enhance the antitumor effect by increasing the local drug concentration. OBJECTIVE: In this pilot study, we made use of Lipiodol as a potential carrier of three promising antitumor metal complexes (tris(8-quinolato)gallium(III) (KP46), tetrachlorobis(indazole)ruthenate(III) (KP1019) and the hydrolysis product of KP1019, mer,trans-[RuCl3(H2O)(Hind)2]. METHODS: The stability of the drugs in Lipiodol and the release profile into the aqueous phase were examined independently by three different analytical techniques (high pressure liquid chromatography, HPLC; atom absorption spectroscopy, AAS; and electron spray ionization mass spectrometry, ESI-MS). RESULTS: The complexes were stable and remained in the Lipiodol emulsion over 3 days. In contrast to KP1019 and KP46, evaluation of Lipiodol emulsions of mer,trans-[RuCl3 (H2O) (Hind) 2] was not possible due to the insolubility of the compound in Lipiodol. KP1019 released rapidly into the aqueous phase in the first week and after 1 month it was not possible to detect the complex in the emulsion. KP46 showed a gradual release with the time resulting in the release of about 6.4 % of KP46 into the aqueous phase after 1 month of incubation. CONCLUSION: The initial results show that Lipiodol can be successfully employed as a carrier of anticancer Ru- or Ga-complexes. Furthermore, advantages can overcome the poor water solubility of the metal complexes, opening new perspectives for the use of Lipiodol emulsions in molecular imaging and cancer therapy as theragnostic agents.


Asunto(s)
Antineoplásicos/química , Aceite Etiodizado/química , Indazoles/química , Compuestos Organometálicos/química , Oxiquinolina/análogos & derivados , Cromatografía Líquida de Alta Presión , Emulsiones/química , Hidrólisis , Imagen Molecular , Estructura Molecular , Oxiquinolina/química , Proyectos Piloto , Compuestos de Rutenio , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA