Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Eur J Neurosci ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192569

RESUMEN

The ventral posterolateral nucleus (VPL), being categorized as the first-order thalamic nucleus, is considered to be dedicated to uni-modal somatosensory processing. Cross-modal sensory interactions on thalamic reticular nucleus cells projecting to the VPL, on the other hand, suggest that VPL cells are subject to cross-modal sensory influences. To test this possibility, the effects of auditory or visual stimulation on VPL cell activities were examined in anaesthetized rats, using juxta-cellular recording and labelling techniques. Recordings were obtained from 70 VPL cells, including 65 cells responsive to cutaneous electrical stimulation of the hindpaw. Auditory or visual alone stimulation did not elicit cell activity except in three bi-modal cells and one auditory cell. Cross-modal alterations of somatosensory response by auditory and/or visual stimulation were recognized in 61 cells with regard to the response magnitude, latency (time and jitter) and/or burst spiking properties. Both early (onset) and late responses were either suppressed or facilitated, and de novo cell activity was also induced. Cross-modal alterations took place depending on the temporal interval between the preceding counterpart and somatosensory stimulations, the intensity and frequency of sound. Alterations were observed mostly at short intervals (< 200 ms) and up to 800 ms intervals. Sounds of higher intensities and lower frequencies were more effective for modulation. The susceptibility to cross-modal influences was related to cell location and/or morphology. These and previously reported similar findings in the auditory and visual thalamic nuclei suggest that cross-modal sensory interactions pervasively take place in the first-order sensory thalamic nuclei.

2.
Neurobiol Dis ; 200: 106642, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173845

RESUMEN

Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.


Asunto(s)
Estrés Psicológico , Animales , Femenino , Masculino , Ratones , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Núcleos Talámicos/metabolismo , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Neural Dev ; 19(1): 6, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890758

RESUMEN

The thalamic reticular nucleus (TRN) serves as an important node between the thalamus and neocortex, regulating thalamocortical rhythms and sensory processing in a state dependent manner. Disruptions in TRN circuitry also figures prominently in several neurodevelopmental disorders including epilepsy, autism, and attentional defects. An understanding of how and when connections between TRN and 1st order thalamic nuclei, such as the dorsal lateral geniculate nucleus (dLGN), develop is lacking. We used the mouse visual thalamus as a model system to study the organization, pattern of innervation and functional responses between TRN and the dLGN. Genetically modified mouse lines were used to visualize and target the feedforward and feedback components of these intra-thalamic circuits and to understand how peripheral input from the retina impacts their development.Retrograde tracing of thalamocortical (TC) afferents through TRN revealed that the modality-specific organization seen in the adult, is present at perinatal ages and seems impervious to the loss of peripheral input. To examine the formation and functional maturation of intrathalamic circuits between the visual sector of TRN and dLGN, we examined when projections from each nuclei arrive, and used an acute thalamic slice preparation along with optogenetic stimulation to assess the maturation of functional synaptic responses. Although thalamocortical projections passed through TRN at birth, feedforward axon collaterals determined by vGluT2 labeling, emerged during the second postnatal week, increasing in density through the third week. Optogenetic stimulation of TC axon collaterals in TRN showed infrequent, weak excitatory responses near the end of week 1. During weeks 2-4, responses became more prevalent, grew larger in amplitude and exhibited synaptic depression during repetitive stimulation. Feedback projections from visual TRN to dLGN began to innervate dLGN as early as postnatal day 2 with weak inhibitory responses emerging during week 1. During week 2-4, inhibitory responses continued to grow larger, showing synaptic depression during repetitive stimulation. During this time TRN inhibition started to suppress TC spiking, having its greatest impact by week 4-6. Using a mutant mouse that lacks retinofugal projections revealed that the absence of retinal input led to an acceleration of TRN innervation of dLGN but had little impact on the development of feedforward projections from dLGN to TRN. Together, these experiments reveal how and when intrathalamic connections emerge during early postnatal ages and provide foundational knowledge to understand the development of thalamocortical network dynamics as well as neurodevelopmental diseases that involve TRN circuitry.


Asunto(s)
Cuerpos Geniculados , Núcleos Talámicos , Vías Visuales , Animales , Cuerpos Geniculados/fisiología , Ratones , Núcleos Talámicos/fisiología , Vías Visuales/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología
4.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828651

RESUMEN

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Asunto(s)
Anestesia General , Estado de Conciencia , Neuronas GABAérgicas , Isoflurano , Propofol , Propofol/farmacología , Isoflurano/farmacología , Animales , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Ratones , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Masculino , Electroencefalografía , Anestésicos por Inhalación/farmacología , Núcleos Talámicos Anteriores/efectos de los fármacos , Núcleos Talámicos Anteriores/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Anestésicos Intravenosos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Optogenética
5.
J Neurosci ; 44(31)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38918065

RESUMEN

Metabotropic glutamate receptor 8 (mGlu8) is a heterogeneously expressed and poorly understood glutamate receptor with potential pharmacological significance. The thalamic reticular nucleus (TRN) is a critical inhibitory modulator of the thalamocortical-corticothalamic (TC-CT) network and plays a crucial role in information processing throughout the brain, is implicated in a variety of psychiatric conditions, and is also a site of significant mGlu8 expression. Using both male and female mice, we determined via fluorescent in situ hybridization that parvalbumin-expressing cells in the TRN core and shell matrices (identified by spp1+ and ecel1+ expression, respectively), as well as the cortical layers involved in CT signaling, express grm8 mRNA. We then assayed the physiological and behavioral impacts of perturbing grm8 signaling in the TC circuit through conditional (adeno-associated virus-CRE mediated) and cell-type-specific constitutive deletion strategies. We show that constitutive parvalbumin grm8 knock-out (PV grm8 knock-out) mice exhibited (1) increased spontaneous excitatory drive onto dorsal thalamus relay cells and (2) impaired sensorimotor gating, measured via paired-pulse inhibition, but observed no differences in locomotion and thigmotaxis in repeated bouts of open field test (OFT). Conversely, we observed hyperlocomotive phenotypes and anxiolytic effects of AAV-mediated conditional knockdown of grm8 in the TRN (TRN grm8 knockdown) in repeated OFT. Our findings underscore a role for mGlu8 in regulating excitatory neurotransmission as well as anxiety-related locomotor behavior and sensorimotor gating, revealing potential therapeutic applications for various neuropsychiatric disorders and guiding future research endeavors into mGlu8 signaling and TRN function.


Asunto(s)
Ratones Noqueados , Receptores de Glutamato Metabotrópico , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Ratones , Masculino , Femenino , Transmisión Sináptica/fisiología , Ratones Endogámicos C57BL , Tálamo/fisiología , Tálamo/metabolismo , Corteza Cerebral/fisiología , Corteza Cerebral/metabolismo , Vías Nerviosas/fisiología , Parvalbúminas/metabolismo
6.
Neuron ; 112(14): 2368-2385.e11, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701789

RESUMEN

Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.


Asunto(s)
Memoria , Núcleos Talámicos , Animales , Ratones , Memoria/fisiología , Núcleos Talámicos/fisiología , Masculino , Neuronas/fisiología , Parvalbúminas/metabolismo , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Conducta Social , Ratones Endogámicos C57BL
7.
Front Neurosci ; 18: 1368816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629053

RESUMEN

Introduction: Subjective tinnitus, the perception of sound without an external acoustic source, is often subsequent to noise-induced hearing loss or ototoxic medications. The condition is believed to result from neuroplastic alterations in the auditory centers, characterized by heightened spontaneous neural activities and increased synchrony due to an imbalance between excitation and inhibition. However, the role of the thalamic reticular nucleus (TRN), a structure composed exclusively of GABAergic neurons involved in thalamocortical oscillations, in the pathogenesis of tinnitus remains largely unexplored. Methods: We induced tinnitus in mice using sodium salicylate and assessed tinnitus-like behaviors using the Gap Pre-Pulse Inhibition of the Acoustic Startle (GPIAS) paradigm. We utilized combined viral tracing techniques to identify the neural circuitry involved and employed immunofluorescence and confocal imaging to determine cell types and activated neurons. Results: Salicylate-treated mice exhibited tinnitus-like behaviors. Our tracing clearly delineated the inputs and outputs of the auditory-specific TRN. We discovered that chemogenetic activation of the auditory TRN significantly reduced the salicylate-evoked rise in c-Fos expression in the auditory cortex. Discussion: This finding posits the TRN as a potential modulatory target for tinnitus treatment. Furthermore, the mapped sensory inputs to the auditory TRN suggest possibilities for employing optogenetic or sensory stimulations to manipulate thalamocortical activities. The precise mapping of the auditory TRN-mediated neural pathways offers a promising avenue for designing targeted interventions to alleviate tinnitus symptoms.

8.
Synapse ; 78(1): e22283, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837643

RESUMEN

Small conductance calcium-activated potassium (SK) channels are well-known regulators of neuronal excitability. In the thalamic hub, SK2 channels act as pacemakers of thalamic reticular neurons, which play a key role in the thalamocortical circuit. Several disease-linked genes are highly enriched in these neurons, including genes known to be associated with schizophrenia and attentional disorders, which could affect neuronal firing. The present study assessed the effect of pharmacological modulation of SK channels in the firing pattern and intrinsic properties of thalamic reticular neurons by performing whole cell patch clamp recordings in brain slices. Two SK positive allosteric modulators and one negative allosteric modulator were used: CyPPA, NS309, and NS8593, respectively. By acting on the burst afterhyperpolarization (AHP), negative modulation of SK channels resulted in increased action potential (AP) firing, increased burst duration, and decreased intervals between bursts. Conversely, both CyPPA and NS309 increased the afterburst AHP, prolonging the interburst interval, which additionally resulted in reduced AP firing in the case of NS309. Alterations in SK channel activity would be expected to alter functioning of thalamocortical circuits. Targeting SK channels could be promising in treating disorders involving thalamic reticular dysfunction such as psychiatric and neurodevelopmental disorders.


Asunto(s)
Neuronas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Potenciales de Acción , Núcleos Talámicos
9.
Eur J Neurosci ; 59(4): 554-569, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36623837

RESUMEN

The thalamic reticular nucleus (TRN) is crucial for the modulation of sleep-related oscillations. The caudal and rostral subpopulations of the TRN exert diverse activities, which arise from their interconnectivity with all thalamic nuclei, as well as other brain regions. Despite the recent characterization of the functional and genetic heterogeneity of the TRN, the implications of this heterogeneity for sleep regulation have not been assessed. Here, using a combination of optogenetics and electrophysiology in C57BL/6 mice, we demonstrate that caudal and rostral TRN modulations are associated with changes in cortical alpha and delta oscillations and have distinct effects on sleep stability. Tonic silencing of the rostral TRN elongates sleep episodes, while tonic silencing of the caudal TRN fragments sleep. Overall, we show evidence of distinct roles exerted by the rostral and caudal TRN in sleep regulation and oscillatory activity.


Asunto(s)
Sueño , Núcleos Talámicos , Ratones , Animales , Ratones Endogámicos C57BL , Núcleos Talámicos/fisiología , Sueño/fisiología , Fenómenos Electrofisiológicos
10.
CNS Neurosci Ther ; 30(3): e14206, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37072918

RESUMEN

AIM: Many biophysical and non-biophysical models have been able to reproduce the corticothalamic activities underlying different EEG sleep rhythms but none of them included the known ability of neocortical networks and single thalamic neurons to generate some of these waves intrinsically. METHODS: We built a large-scale corticothalamic model with a high fidelity in anatomical connectivity consisting of a single cortical column and first- and higher-order thalamic nuclei. The model is constrained by different neocortical excitatory and inhibitory neuronal populations eliciting slow (<1 Hz) oscillations and by thalamic neurons generating sleep waves when isolated from the neocortex. RESULTS: Our model faithfully reproduces all EEG sleep waves and the transition from a desynchronized EEG to spindles, slow (<1 Hz) oscillations, and delta waves by progressively increasing neuronal membrane hyperpolarization as it occurs in the intact brain. Moreover, our model shows that slow (<1 Hz) waves most often start in a small assembly of thalamocortical neurons though they can also originate in cortical layer 5. Moreover, the input of thalamocortical neurons increases the frequency of EEG slow (<1 Hz) waves compared to those generated by isolated cortical networks. CONCLUSION: Our simulations challenge current mechanistic understanding of the temporal dynamics of sleep wave generation and suggest testable predictions.


Asunto(s)
Corteza Cerebral , Neocórtex , Corteza Cerebral/fisiología , Electroencefalografía , Tálamo , Sueño/fisiología , Neuronas/fisiología
11.
Cogn Neurodyn ; 17(6): 1541-1559, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37974577

RESUMEN

The thalamocortical system plays an important role in consciousness. How anesthesia modulates the thalamocortical interactions is not completely known.  We simultaneously recorded local field potentials(LFPs) in thalamic reticular nucleus(TRN) and ventroposteromedial thalamic nucleus(VPM), and electrocorticographic(ECoG) activities in frontal and occipital cortices in freely moving rats (n = 11). We analyzed the changes in thalamic and cortical local spectral power and connectivities, which were measured with phase-amplitude coupling (PAC), coherence and multivariate Granger causality, at the states of baseline, intravenous infusion of propofol 20, 40, 80 mg/kg/h and after recovery of righting reflex. We found that propofol-induced burst-suppression results in a synchronous decrease of spectral power in thalamus and cortex (p < 0.001 for all frequency bands). The cross-frequency PAC increased by propofol, characterized by gradually stronger 'trough-max' pattern in TRN and stronger 'peak-max' pattern in cortex. The cross-region PAC increased in the phase of TRN modulating the amplitude of cortex. The functional connectivity (FC) between TRN and cortex for α/ß bands also significantly increased (p < 0.040), with increased directional connectivity from TRN to cortex under propofol anesthesia. In contrast, the corticocortical FC significantly decreased (p < 0.047), with decreased directional connectivity from frontal cortex to occipital cortex. However, the thalamothalamic functional and directional connectivities remained largely unchanged by propofol anesthesia.  The spectral powers and connectivities are differentially modulated with the changes of propofol doses, suggesting the changes in neural dynamics in thalamocortical system could be used for distinguishing different vigilance levels caused by propofol. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09912-0.

12.
Rinsho Shinkeigaku ; 63(10): 643-649, 2023 Oct 25.
Artículo en Japonés | MEDLINE | ID: mdl-37779025

RESUMEN

A 76-year-old male patient was admitted to our hospital for the treatment of acute cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions. Although his overall cognitive function was almost normal, he exhibited reduced visual sensitivity in the homonymous lower left quadrant of the visual field, left unilateral spatial neglect (USN), and simultanagnosia. Left USN improved 4 months after the onset of infarction; however, simultanagnosia persisted. To the best of our knowledge, this is the first case of simultanagnosia caused by cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions.


Asunto(s)
Agnosia , Trastornos de la Percepción , Pulvinar , Masculino , Humanos , Anciano , Pulvinar/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Infarto Cerebral/complicaciones , Infarto Cerebral/diagnóstico por imagen , Agnosia/diagnóstico , Agnosia/etiología , Trastornos de la Percepción/etiología
13.
J Physiol Sci ; 73(1): 14, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328793

RESUMEN

The external globus pallidus (GP) firing rate synchronizes the basal ganglia-thalamus-cortex network controlling GABAergic output to different nuclei. In this context, two findings are significant: the activity and GABAergic transmission of the GP modulated by GABA B receptors and the presence of the GP-thalamic reticular nucleus (RTn) pathway, the functionality of which is unknown. The functional participation of GABA B receptors through this network in cortical dynamics is feasible because the RTn controls transmission between the thalamus and cortex. To analyze this hypothesis, we used single-unit recordings of RTn neurons and electroencephalograms of the motor cortex (MCx) before and after GP injection of the GABA B agonist baclofen and the antagonist saclofen in anesthetized rats. We found that GABA B agonists increase the spiking rate of the RTn and that this response decreases the spectral density of beta frequency bands in the MCx. Additionally, injections of GABA B antagonists decreased the firing activity of the RTn and reversed the effects in the power spectra of beta frequency bands in the MCx. Our results proved that the GP modulates cortical oscillation dynamics through the GP-RTn network via tonic modulation of RTn activity.


Asunto(s)
Globo Pálido , Receptores de GABA-B , Ratas , Animales , Globo Pálido/metabolismo , Receptores de GABA-B/metabolismo , Ganglios Basales , Agonistas del GABA/metabolismo , Agonistas del GABA/farmacología , Neuronas/metabolismo
14.
Prog Neurobiol ; 226: 102464, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169275

RESUMEN

The pathogenetic mechanism of persistent post-concussive symptoms (PCS) following concussion remains unclear. Thalamic damage is known to play a role in PCS prolongation while the evidence and biomarkers that trigger persistent PCS have never been elucidated. We collected longitudinal neuroimaging and behavior data from patients and rodents after concussion, complemented with rodents' histological staining data, to unravel the early biomarkers of persistent PCS. Diffusion tensor imaging (DTI) were acquired to investigated the thalamic damage, while quantitative thalamocortical coherence was derived through resting-state functional MRI for evaluating thalamocortical functioning and predicting long-term behavioral outcome. Patients with prolonged symptoms showed abnormal DTI-derived indices at the boundaries of bilateral thalami (peri-thalamic regions). Both patients and rats with persistent symptoms demonstrated enhanced thalamocortical coherence between different thalamocortical circuits, which disrupted thalamocortical multifunctionality. In rodents, the persistent DTI abnormalities were validated in thalamic reticular nucleus (TRN) through immunohistochemistry, and correlated with enhanced thalamocortical coherence. Strong predictive power of these coherence biomarkers for long-term PCS was also validated using another patient cohort. Postconcussive events may begin with persistent TRN injury, followed by disrupted thalamocortical coherence and prolonged PCS. Functional MRI-based coherence measures can be surrogate biomarkers for early prediction of long-term PCS.


Asunto(s)
Síndrome Posconmocional , Ratas , Animales , Síndrome Posconmocional/diagnóstico por imagen , Síndrome Posconmocional/patología , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen , Biomarcadores
15.
Cell Stem Cell ; 30(5): 677-688.e5, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019105

RESUMEN

Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain.


Asunto(s)
Núcleos Talámicos , Tálamo , Humanos , Núcleos Talámicos/patología , Núcleos Talámicos/fisiología , Neuronas/fisiología , Organoides
16.
Neurobiol Dis ; 181: 106107, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001612

RESUMEN

Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.


Asunto(s)
Epilepsia Tipo Ausencia , Animales , Niño , Humanos , Ratones , Ratas , Epilepsia Tipo Ausencia/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Neuronas/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
17.
Cell Rep ; 42(3): 112200, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36867532

RESUMEN

Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.


Asunto(s)
Tálamo , Vigilia , Ratones , Animales , Tálamo/fisiología , Sueño/fisiología , Núcleos Talámicos/fisiología , Percepción , Corteza Cerebral/fisiología
18.
Neurotoxicology ; 95: 94-106, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669621

RESUMEN

OBJECTIVE: To explore the relationship between the proinflammatory factor high-mobility group box 1 (HMGB1) and glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the development of epilepsy. METHODS: Thalamic reticular nucleus (TRN) slices were treated with kainic acid (KA) to simulate seizures. Action potentials and spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded within TRN slices using whole-cell patch clamp techniques. The translocation of HMGB1 was detected by immunofluorescence. The HMGB1/TLR4 signaling pathway and its downstream inflammatory factors (IL-1ß and NF-κB) were detected by RTPCR, Western blot and ELISA. RESULTS: KA-evoked spikings were observed in TRN slices and blocked by perampanel. sIPSCs in the TRN were enhanced by KA and reduced by perampanel. The translocation of HMGB1 in the TRN was promoted by KA and inhibited by perampanel. The expression of the HMGB1/TLR4 signaling pathway was promoted by KA and suppressed by perampanel. CONCLUSION: KA induced hyperexcitability activates the HMGB1/TLR4 pathway, which potentially leading to neuroinflammation in epilepsy.


Asunto(s)
Epilepsia , Proteína HMGB1 , Humanos , Ácido Kaínico/toxicidad , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/metabolismo , FN-kappa B/metabolismo , Receptores AMPA/metabolismo
19.
Brain Sci ; 13(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672127

RESUMEN

In the decade since its debut, the Mesocircuit Hypothesis (MH) has provided researchers a scaffolding for interpreting their findings by associating subcortical-cortical dysfunction with the loss and recovery of consciousness following severe brain injury. Here, we leverage new findings from human and rodent lesions, as well as chemo/optogenetic, tractography, and stimulation studies to propose the external segment of the globus pallidus (GPe) as an additional node in the MH, in hopes of increasing its explanatory power. Specifically, we discuss the anatomical and molecular mechanisms involving the GPe in sleep-wake control and propose a plausible mechanistic model explaining how the GPe can modulate cortical activity through its direct connections with the prefrontal cortex and thalamic reticular nucleus to initiate and maintain sleep. The inclusion of the GPe in the arousal circuitry has implications for understanding a range of phenomena, such as the effects of the adenosine (A2A) and dopamine (D2) receptors on sleep-wake cycles, the paradoxical effects of zolpidem in disorders of consciousness, and sleep disturbances in conditions such as Parkinson's Disease.

20.
Brain Res ; 1799: 148174, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36427592

RESUMEN

Previous studies have demonstrated that thalamic reticular nucleus (TRN) and the sub-nuclei play important roles in pain sensation. Our previous findings showed that activating parvalbumin-positive (PV+) neurons in dorsal sector of TRN (dTRN) could reduce the pain threshold and consequently increase the pain sensitivity of mice. Recent studies have shown that activation of GABAergic projection of TRN to ventrobasal thalamus (VB) alleviated pathological pain. GABAergic neurons in TRN are mainly PV+ neurons. However, the exact roles of ventral TRN (vTRN) PV+ neurons in pain sensation remain unclear. In this study, the designer receptors exclusively activated by designer drugs (DREADD) method was used to activate the PV+ neurons in vTRN of PV-Cre transgenic mice, and the mechanical threshold and thermal latency were measured to investigate the regulatory effects of vTRN on pain sensitivity in mice. Thereafter, PV-Cre transgenic mice, conditional anterograde axonal tract tracing, and immunohistochemistry were used to investigate the distribution of PV+ neurons fibers in vTRN. The results showed that the activation of PV+ neurons in vTRN increased the mechanical threshold and thermal latency, which indicated reduction of pain sensitivity. The fibers of these neurons mainly projected to ventral posterolateral thalamic nucleus (VPL), ventral posteromedial thalamic nucleus (VPM), ventrolateral thalamic nucleus (VL), centrolateral thalamic nucleus (CL) and various other brain regions. These findings indicated that activation of PV+ neurons in the vTRN decreased pain sensitivity in mice, which provided additional evidence on the mechanisms of PV+ neurons of TRN in regulating neuralgia.


Asunto(s)
Núcleos Talámicos Intralaminares , Neuralgia , Ratones , Animales , Núcleos Talámicos Ventrales , Umbral del Dolor , Núcleos Talámicos/fisiología , Ratones Transgénicos , Neuronas GABAérgicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA