Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(5): 158, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700822

RESUMEN

CONTEXT: As new materials, the ternary chalcogenides have recently brought scientists' attention. These materials are a novel class of semiconducting chemical compounds. They allow the increase of the photo-conversion efficiency, the performance, and the cheap energy cost. Such materials also provide a wide range of physical and chemical applications. METHODS: The used investigation employs Density Functional Theory (DFT) implemented in the Wien2k package to systematically characterize the physical properties of ternary chalcogenide compounds XBiSe2 (X = Li, Na and K). Such method emphasizes their applicability to energy conversion technologies. Scrutinizing their electronic, optical, and thermoelectric properties elucidates the effect of alkali metal substitution on performance metrics. The results not only advance knowledge of these materials' physicochemical behaviors but also reveal their potential for tailored functionalization in next-generation energy and optoelectronic systems, marking a significant stride in material science and application-oriented research.

2.
Adv Sci (Weinh) ; 10(20): e2300413, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37116118

RESUMEN

Photodetector based on two-dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power-dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2 NiS5 . While the fabricated photodetector exhibits good sensitivity (3.1 mS W-1 per □) and fast photoresponse (31 µs), the bias-, polarization-, and spatial-resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm-2 , the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two-recombination-center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions.

3.
Mikrochim Acta ; 189(8): 303, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915284

RESUMEN

A self-powered photoelectrochemical (PEC) aptasensor was constructed to sensitively detect 17ß-estradiol (E2). Firstly, a reasonable AgInS2@Co/Ni-UiO-66@Carbon Nanodots (CDs) photoelectrode with excellent photoelectrochemical performance was built by a simple two-step preparation method. The Co and Ni doping markedly improved the activity of UiO-66; the matched energy level of AgInS2 and Co/Ni-UiO-66 promoted the separation of electron-hole pairs, and the coupling of CDs further enhanced the conductivity and light utilization. Therefore, a steady anode-photocurrent signal output was obtained in 0.0 V bias voltage, providing a reliable photoelectric translating platform for assembling a self-powered PEC aptasensor. The E2-aptamer was adopted as a recognition unit to enhance the selectivity and sensitivity of the proposed aptasensor. The specific recognition reaction between E2 and aptamer administering to a raised photocurrent signal and the concentration of E2 was quantified by counting the fluctuation of the anode-photocurrent signal. The linear response range of the PEC aptasensor was 1.0 × 10-5-10 nmol/L, and the detection limit (S/N = 3) was lower than 3.0 fmol/L under optimal conditions. The fabricated aptasensor exhibited admirable selectivity, high sensitivity, rapid response, and wide linear range, demonstrating an extensive application prospect for environmental endocrine disruptor detection.


Asunto(s)
Aptámeros de Nucleótidos , Disruptores Endocrinos , Ácidos Ftálicos , Electrodos , Disruptores Endocrinos/análisis , Estructuras Metalorgánicas
4.
Nanotechnology ; 32(38)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34130261

RESUMEN

Cubic phase AgSbS2nanocrystals (NCs) were synthesized by the hot-injection method, and they were inserted between the Al andp-Si to fabricate Al/AgSbS2/p-Si photodiode by the thermal evaporation method. AgSbS2NCs were characterized by XRD, SEM and TEM instruments to confirm the crystal phase, surface morphology as well as crystalline size. The XRD pattern revealed that the cubic crystalline structure of the AgSbS2. The spherical shapes and well surface morphology were affirmed by SEM and TEM analysis. Al/AgSbS2/p-Si photodiode was characterized byI-Vmeasurements depending on the light power intensity and byC-Vmeasurement for various frequencies.I-Vcharacteristics revealed that the Al/AgSbS2/p-Si exhibited good photodiode behavior and a high rectifying ratio. Various diode and detector parameters were extracted fromI-Vmeasurements, and they were discussed in detail. TheC-Vcharacteristics highlighted that the Al/AgSbS2/p-Si photodiode showed voltage and frequency dependent profile at the accumulation region. The fabricated Al/AgSbS2/p-Si photodiode can be thought for optoelectronic applications.

5.
ChemSusChem ; 14(15): 3074-3083, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34038021

RESUMEN

A facile microwave-assisted strategy was employed to synthesize Ni3 Bi2 S2 nanocrystals. Variation in the synthesis conditions tuned the composition of monoclinic and orthorhombic phases of Ni3 Bi2 S2 . The electrochemical hydrogen evolution activity of the catalyst with highest percentage of monoclinic phase demonstrated a negligible onset potential of only 24 mV close to that of state-of-the-art Pt/C with an overpotential as low as 88 mV. Density functional theory calculations predicted the monoclinic phase exhibit the lowest adsorption free energy corresponding to hydrogen adsorption ( Δ G ads H * ) and, therefore, the highest hydrogen evolution activity amongst the considered phases. The quasi-2D structure of monoclinic phase facilitated an increased charge-transfer between Ni and Bi, favoring the downward shift of the d-band center to enhance the catalytic activity.

6.
ACS Nano ; 12(12): 12902-12911, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30507155

RESUMEN

The emerging sodium ion batteries (SIBs) are believed to be prospective substitutes for lithium ion batteries (LIBs) because of the wide distribution of sodium resources. However, to compensate for the sluggish reaction kinetics and higher intrinsic potential of Na+ compared to Li+, cost-effective, reliable, and sustainable electrode materials must be explored for practical applications. Herein, 2D ternary tin thiophosphate (SnP2S6) nanosheets (∼10 nm thickness) grown on graphene (denoted as SPS/G hybrid) are demonstrated as intriguing anodes for SIBs. The asymmetric-layered structure and ternary composition enable the SPS/G hybrid with a high reversible capacity (1230 mAh g-1 at 50 mA g-1), superior rate capability (200 mAh g-1 at 15 A g-1), and an exceptional capacity retention of 76% after 1000 cycles at 2.0 A g-1. More importantly, a prototype sodium-ion full cell constructed by pairing with the Na3V2O2(PO4)3F cathode affords a high capacity of 470 mAh g-1 at 30 mA g-1 (on the basis of anode weight) and good cyclic capacity of 360 mAh g-1 at 150 mA g-1. Such 2D ternary chalcogenides with low-cost elements are promising materials for superior SIBs.

7.
Chemistry ; 24(51): 13676-13680, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30009408

RESUMEN

Focusing on ternary I-III-VI2 colloidal nanocrystals (NCs) synthesized with precise control of the composition (from doping to ternary composition) and NIR fluorescence performance, monodisperse binary In3+ -doped Ag2 S NCs and ternary AgInS2 NCs have been achieved successfully by facile low-temperature in situ conversion of colloidal Ag2 S nanoparticles. In3+ ions were inserted into the crystal lattice of Ag2 S NCs at a relatively low temperature as dopant and ternary AgInS2 NCs were obtained at a higher temperature following a phase transition. These doped Ag2 S and AgInS2 NCs based on different indium precursor concentrations were explored with respect to the position and intensity of the near-infrared photoluminescent emission at different doping levels and crystal phase evolution.

8.
ACS Nano ; 10(9): 8888-94, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27526274

RESUMEN

Atomically thin nanosheets, as recently realized using van der Waals layered materials, offer a versatile platform for studying the stability and tunability of the correlated electron phases in the reduced dimension. Here, we investigate a thickness-dependent excitonic insulating (EI) phase on a layered ternary chalcogenide Ta2NiSe5. Using Raman spectroscopy, scanning tunneling spectroscopy, and in-plane transport measurements, we found no significant changes in crystalline and electronic structures as well as disorder strength in ultrathin Ta2NiSe5 crystals with a thickness down to five layers. The transition temperature, Tc, of ultrathin Ta2NiSe5 is reduced from its bulk value by ΔTc/Tc(bulk) ≈ -9%, which strongly contrasts the case of 1T-TiSe2, another excitonic insulator candidate, showing an increase of Tc by ΔTc/Tc(bulk) ≈ +30%. This difference is attributed to the dominance of interband Coulomb interaction over electron-phonon interaction and its zero-ordering wave vector due to the direct band gap structure of Ta2NiSe5. The out-of-plane correlating length of the EI phase is estimated to have monolayer thickness, suggesting that the EI phase in Ta2NiSe5 is highly layer-confined and in the strong coupling limit.

9.
Angew Chem Int Ed Engl ; 55(19): 5733-8, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27060363

RESUMEN

As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA