Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793135

RESUMEN

In this paper, we propose a novel method for temperature measurement using surface acoustic wave (SAW) temperature sensors on curved or irregular surfaces. We integrate SAW resonators onto flexible printed circuit boards (FPCBs) to ensure better conformity of the temperature sensor with the surface of the object under test. Compared to traditional rigid PCBs, FPCBs offer greater dynamic flexibility, lighter weight, and thinner thickness, which make them an ideal choice for making SAW devices working for temperature measurements under curved surfaces. We design a temperature sensor array consisting of three devices with different operating frequencies to measure the temperature at multiple points on the surface of the object. To distinguish between different target points in the sensor array, each sensor operates at a different frequency, and the operating frequency bands do not overlap. This differentiation is achieved using Frequency Division Multiple Access (FDMA) technology. Experimental results indicate that the frequency temperature coefficients of these sensors are -30.248 ppm/°C, -30.195 ppm/°C, and -30.115 ppm/°C, respectively. In addition, the sensor array enables wireless communication via antenna and transceiver circuits. This innovation heralds enhanced adaptability and applicability for SAW temperature sensor applications.

2.
Micromachines (Basel) ; 14(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37630157

RESUMEN

Current methods for thin film sensors preparation include screen printing, inkjet printing, and MEMS (microelectromechanical systems) techniques. However, their limitations in achieving sub-10 µm line widths hinder high-density sensors array fabrication. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 µm width. In this paper, we innovatively proposed a method using only EHD printing to prepare ultra-micro thin film temperature sensors array. The sensitive layer of the four sensors was compactly integrated within an area measuring 450 µm × 450 µm, featuring a line width of less than 10 µm, and a film thickness ranging from 150 nm to 230 nm. The conductive network of silver nanoparticles exhibited a porosity of 0.86%. After a 17 h temperature-resistance test, significant differences in the performance of the four sensors were observed. Sensor 3 showcased relatively superior performance, boasting a fitted linearity of 0.99994 and a TCR of 937.8 ppm/°C within the temperature range of 20 °C to 120 °C. Moreover, after the 17 h test, a resistance change rate of 0.17% was recorded at 20 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA