Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Adv Mater ; : e2407859, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223852

RESUMEN

Temperature and pulse waves are two fundamental indicators of body health. Specifically, thermoresistive flexible temperature sensors are one of the most applied sensors. However, they suffer from poor reproducibility of resistivity; and decoupling temperature from pressure/strain is still challenging. Besides, autonomous thermoregulation by wearable sensory systems is in high demand, but conventional commercial apparatuses are cumbersome and not suitable for long-term portable use. Here, a material-design strategy is developed to overcome the problem of poor reproducibility of resistivity by tuning the thermal expansion coefficient to nearly zero, precluding the detriment caused by shape expansion/shrinkage with temperature variation and achieving high reproducibility. The strategy also obtains more reliable sensitivity and higher stability, and the designed thermoresistive fiber has strain-insensitive sensing performance and fast response/recovery time. A smart textile woven by the thermoresistive fiber can decouple temperature and pulse without crosstalk; and a flexible wireless closed-loop system comprising the smart textile, a heating textile, a flexible diminutive control patch, and a smartphone is designed and constructed to monitor health status in real-time and autonomously regulate body temperature. This work offers a new route to circumvent temperature-sensitive effects for flexible sensors and new insights for personalized thermoregulation.

2.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39275401

RESUMEN

This paper presents the introduction, design, and experimental validation of two small helical antennae. These antennae are a component of the surface acoustic wave (SAW) sensor interrogation system, which has been miniaturized to operate at 915 MHz and aims to improve the performance of wireless passive SAW temperature-sensing applications. The proposed antenna designs are the normal-mode cylindrical helical antenna (CHA) and the hemispherical helical antenna (HSHA); both designed structures are developed for the ISM band, which ranges from 902 MHz to 928 MHz. The antennae exhibit resonance at 915 MHz with an operational bandwidth of 30 MHz for the CHA and 22 MHz for the HSHA. A notch occurs in the operating band, caused by the characteristics of the SAW sensor. The presence of this notch is crucial for the temperature measurement by aiding in calculating the frequency shifting of that notch. The decrement in the resonance frequency of the SAW sensor is about 66.67 kHz for every 10 °C, which is obtained by conducting the temperature measurement of the system model across temperature environments ranging from 30 °C to 90 °C to validate the variation in system performance.

3.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275493

RESUMEN

A novel highly sensitive D-shaped photonic crystal fiber-based surface plasmon resonance (PCF-SPR) sensor for dual parameters of refractive index and temperature detecting is proposed. A PCF cladding polishing provides a D-shape design with a gold (Au) film coating for refractive index (RI) sensing (Core 1) and a composite film of silver (Ag) and polydimethylsiloxane (PDMS) for temperature sensing (Core 2). Comsol Multiphysics 5.5 is used to design and simulate the proposed sensor by the finite element method (FEM). The proposed sensor numerically provides results with maximum wavelength sensitivities (WSs) of 51,200 and 56,700 nm/RIU for Core 1 and 2 as RI sensing while amplitude sensitivities are -98.9 and -147.6 RIU-1 with spectral resolution of 1.95 × 10-6 and 1.76 × 10-6 RIU, respectively. Notably, wavelength sensitivity of 17.4 nm/°C is obtained between -20 and -10 °C with resolution of 5.74 × 10-3 °C for Core 2 as temperature sensing. This sensor can efficiently work in the analyte and temperature ranges of 1.33-1.43 RI and -20-100 °C. Due to its high sensitivity and wide detection ranges, both in T and RI sensing, it is a promising candidate for a variety of applications, including chemical, medical, and environmental detection.

4.
Sci Rep ; 14(1): 19076, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154019

RESUMEN

The current investigation theoretically presents a one-dimensional phononic crystal (PnC) as a fluidic sensor. The sensor under consideration aims to distinguish the concentration of acetic acid. The primary configuration of the proposed sensor is constructed with lead, epoxy, and a defect layer in the middle of the structure, that is filled with acetic acid (vinegar). As a result of the rise in density and decline in the speed of sound at a 100% concentration of acetic acid in comparison to pure water, the peak frequency of the output has shifted towards lower frequencies. Given that the maximum permissible concentration of acetic acid in water for vinegar is above 30%, sensor simulations were conducted within the concentration range of 25-35% with a step size of 1%. Interestingly, the sensitivity of the sensor exhibits a polynomial change in response to the concentration of acetic acid. Consequently, the highest level of sensitivity, which corresponds to the lowest concentration of vinegar, is recorded as 48.44 × 106 (Hz). The proposed system exhibits a remarkable value of the quality factor of 2802.91. Furthermore, the optimal figure of merit (FOM) is achieved when the concentration is at its lowest, with a value of 94.00. Furthermore, the temperature effects are taken into account for a wide range between 10 and 60 °C. A pronouncing sensitivity is obtained for all temperatures changes and the highest one reached the value of 1.57 × 106 (Hz/°C) at a temperature of 25 °C. Considering the present circumstances, the suggested sensor configuration has the potential to cater to a diverse array of other fluids, specifically their concentration and temperature, thereby offering a broad scope of applications.

5.
Sci Rep ; 14(1): 19733, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183352

RESUMEN

This paper seeks to progress the field of topological photonic crystals (TPC) as a promising tool in face of construction flaws. In particular, the structure can be used as a novel temperature sensor. In this regard, the considered TPC structure comprising two different PC designs named PC1 and PC2. PC1 is designed from a stack of multilayers containing Silicon (Si) and Silicon dioxide (SiO2), while layers of SiO2 and composite layer named hyperbolic metamaterial (HMM) are considered in designing PC2. The HMM layer is engineered using subwavelength layers of Si and Bismuth Germinate, or BGO ( Bi 4 Ge 3 O 12 ). The mainstay of our suggested temperature sensor is mainly based on the emergence of some resonant modes inside the transmittance spectrum that provide the stability in the presence of the geometrical changes. Meanwhile, our theoretical framework has been introduced in the vicinity of transfer matrix method (TMM), effective medium theory (EMT) and the thermo-optic characteristics of the considered materials. The numerical findings have extensively introduced the role of some topological parameters such as layers' thicknesses, filling ratio through HMM layers and the periodicity of HMM on the stability or the topological features of the introduced sensor. Meanwhile, the numerical results reveal that the considered design provides some topological edge states (TESs) of a promising robustness and stability against certain disturbances or geometrical changes in the constituent materials. In addition, our sensing tool offers a relatively high sensitivity of 0.27 nm/°C.

6.
J Colloid Interface Sci ; 677(Pt B): 816-826, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39173514

RESUMEN

Smart sensing and excellent actuation abilities of natural organisms have driven scientists to develop bionic soft-bodied robots. However, most conventional robots suffer from poor electrical conductivity, limiting their application in real-time sensing and actuation. Here, we report a novel strategy to enhance the electrical conductivity of hydrogels that integrated actuation and strain-sensing functions for bioinspired self-sensing soft actuators. Conductive hydrogels were synthesized in situ by copolymerizing MXene nanosheets with thermosensitive N-isopropylacrylamide and acrylamide under a direct current electric field. The resulting hydrogels exhibited high electrical conductivity (2.11 mS/cm), good sensitivity with a gauge factor of 4.79 and long-term stability. The developed hydrogels demonstrated remarkable capabilities in detecting human motions at subtle strains such as facial expressions and large strains such as knee bending. Additionally, the hydrogel electrode patch was capable of monitoring physiological signals. Furthermore, the developed hydrogel showed good thermally induced actuation effects when the temperature was higher than 30 °C. Overall, this work provided new insights for the design of sensory materials with integrated self-sensing and actuation capabilities, which would pave the way for the development of high-performance conductive soft materials for intelligent soft robots and automated machinery.

7.
Sensors (Basel) ; 24(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39123929

RESUMEN

The transition from wakefulness to sleep occurs when the core body temperature decreases. The latter is facilitated by an increase in the cutaneous blood flow, which dissipates internal heat into the micro-environment surrounding the sleeper's body. The rise in cutaneous blood flow near sleep onset causes the distal (hands and feet) and proximal (abdomen) temperatures to increase by about 1 °C and 0.5 °C, respectively. Characterizing the dynamics of skin temperature changes throughout sleep phases and understanding its relationship with sleep quality requires a means to unobtrusively and longitudinally estimate the skin temperature. Leveraging the data from a temperature sensor strip (TSS) with five individual temperature sensors embedded near the surface of a smart bed's mattress, we have developed an algorithm to estimate the distal skin temperature with a minute-long temporal resolution. The data from 18 participants who recorded TSS and ground-truth temperature data from sleep during 14 nights at home and 2 nights in a lab were used to develop an algorithm that uses a two-stage regression model (gradient boosted tree followed by a random forest) to estimate the distal skin temperature. A five-fold cross-validation procedure was applied to train and validate the model such that the data from a participant could only be either in the training or validation set but not in both. The algorithm verification was performed with the in-lab data. The algorithm presented in this research can estimate the distal skin temperature at a minute-level resolution, with accuracy characterized by the mean limits of agreement [-0.79 to +0.79 °C] and mean coefficient of determination R2=0.87. This method may enable the unobtrusive, longitudinal and ecologically valid collection of distal skin temperature values during sleep. Therelatively small sample size motivates the need for further validation efforts.


Asunto(s)
Algoritmos , Lechos , Temperatura Cutánea , Sueño , Temperatura Cutánea/fisiología , Humanos , Sueño/fisiología , Masculino , Femenino , Adulto , Vigilia/fisiología , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación
8.
ACS Appl Mater Interfaces ; 16(36): 48176-48186, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186766

RESUMEN

Developing an electronic skin (e-skin) is becoming popular due to its capability to mimic human skin's ability to detect various stimuli. Mostly, such skins are tactile-based sensors. However, the exploration of nontactile-based sensing capability in the e-skin is still in a nascent stage. Herein, we report an approach toward developing electrical hysteresis- and cross-interference-free nontactile e-skin using liquid polyisoprene with an ultralow concentration of multiwalled carbon nanotubes (ϕ = 0.006 volume fraction) by leveraging the stencil printing technique. The impact of cross-linking the samples was studied. Uncross-linked samples demonstrated higher electrical conductivity than the cross-linked samples. A coarse-grained phenomenological model with molecular dynamics simulation was utilized to investigate filler network formation and percolation that dictate the conductivity of uncross-linked and cross-linked samples. Simulation studies supported the fidelity of the experimental findings. The uncross-linked e-skin demonstrated a higher temperature sensitivity (-1.103%/°C) than the cross-linked e-skin (-0.320%/°C) in the thermal conduction mode. Despite the superior sensitivity of the uncross-linked e-skin, the cross-linked systems demonstrated superior cyclic stability (35 thermal cycles), ensuring reliable sensor readings over extended usage. Judicious choice of encapsulant warranted the cross-linked e-skin sensor to nullify the impact of moisture on signal output, thereby providing cross-interference-free results. The optimized e-skin sample retained a similar thermal sensitivity even when used in the nontactile mode. From the application purview, the utility of the developed sensor was tested successfully for nontactile sensing of human body temperature. Additionally, the sensor was utilized to determine the respiratory profile by integrating the developed sensor into a wearable mask. This study advances nontactile e-skin-based sensing technology and opens new avenues for creating wearable and IoT devices for healthcare and human-machine interactions.


Asunto(s)
Conductividad Eléctrica , Hemiterpenos , Nanotubos de Carbono , Temperatura , Dispositivos Electrónicos Vestibles , Nanotubos de Carbono/química , Hemiterpenos/química , Hemiterpenos/análisis , Humanos , Butadienos/química , Simulación de Dinámica Molecular
9.
ACS Appl Mater Interfaces ; 16(36): 48211-48222, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189921

RESUMEN

Human skin has several receptors collaborating with the brain to provide appropriate "decisions" when applying stimuli. Several research articles state that biomimetic electronic skin (e-skin) is reportedly used for sensor-related applications and performs similarly to natural skin. However, research reporting the capability of the e-skin to make decisions and therefore react upon exposure to adverse conditions is still in its nascent stage. Herein, we report the development of an e-skin, ThermoSense, that can thermoregulate by making appropriate decisions. Thermoplastic polyurethane and multiwalled carbon nanotubes were used as the model composite. The heating and sensing capabilities of the optimized e-skin were studied in detail. In the study window, the e-skin demonstrated excellent electrothermal conversion efficiency by generating a temperature of 192 °C, consuming a power of 2.23 W. A finite element modeling (FEM) was adopted to determine the distribution of the filler in the case of the optimized e-skin and thus was used to probe the reason for the heating across the e-skin via mapping of the internal energy across the sample. FEM results and experimental findings are in strong agreement. Additionally, the e-skin demonstrated its capability to act as a thermal sensor with a 0.947% °C-1 sensitivity. To integrate the decision-making capabilities of the e-skin, an Internet of Things (IoT) brain console was made using the e-skin and electronic chips by leveraging More than Moore's concept. The IoT brain was automated with decision-making programming that was controllable via an in-house-developed mobile application. The console worked exclusively under simulated conditions. When there was a shift from the set point temperature, it started to heat. Postusage, the e-skin matrix was recycled, and the recycled e-skin demonstrated a marginal decrement in performance attributes. This study opens new avenues for developing decision-making e-skins for next-generation human-machine interphases.


Asunto(s)
Nanotubos de Carbono , Poliuretanos , Dispositivos Electrónicos Vestibles , Nanotubos de Carbono/química , Poliuretanos/química , Humanos , Internet de las Cosas , Toma de Decisiones , Encéfalo/fisiología , Piel/química
10.
Int J Biol Macromol ; 278(Pt 2): 134604, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137853

RESUMEN

The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.


Asunto(s)
Capacidad Eléctrica , Seda , Temperatura , Dispositivos Electrónicos Vestibles , Seda/química , Técnicas Biosensibles/métodos
11.
EMBO J ; 43(18): 4020-4048, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39134659

RESUMEN

Sex determination in animals is not only determined by karyotype but can also be modulated by environmental cues like temperature via unclear transduction mechanisms. Moreover, in contrast to earlier views that sex may exclusively be determined by either karyotype or temperature, recent observations suggest that these factors rather co-regulate sex, posing another mechanistic mystery. Here, we discovered that certain wild-isolated and mutant C. elegans strains displayed genotypic germline sex determination (GGSD), but with a temperature-override mechanism. Further, we found that BiP, an ER chaperone, transduces temperature information into a germline sex-governing signal, thereby enabling the coexistence of GGSD and temperature-dependent germline sex determination (TGSD). At the molecular level, increased ER protein-folding requirements upon increased temperatures lead to BiP sequestration, resulting in ERAD-dependent degradation of the oocyte fate-driving factor, TRA-2, thus promoting male germline fate. Remarkably, experimentally manipulating BiP or TRA-2 expression allows to switch between GGSD and TGSD. Physiologically, TGSD allows C. elegans hermaphrodites to maintain brood size at warmer temperatures. Moreover, BiP can also influence germline sex determination in a different, non-hermaphroditic nematode species. Collectively, our findings identify thermosensitive BiP as a conserved temperature sensor in TGSD, and provide mechanistic insights into the transition between GGSD and TGSD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Células Germinativas , Procesos de Determinación del Sexo , Temperatura , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Masculino , Células Germinativas/metabolismo , Femenino , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
12.
Polymers (Basel) ; 16(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204517

RESUMEN

In this paper, a temperature sensor based on a polymer-silica heterogeneous integrated Mach-Zehnder interferometer (MZI) structure is proposed. The MZI structure consists of a polymer waveguide arm and a doped silica waveguide arm. Due to the opposite thermal optical coefficients of polymers and silica, the hybrid integrated MZI structure enhances the temperature sensing characteristics. The direct coupling method and side coupling method are introduced to reduce the coupling loss of the device. The simulation results show that the side coupling structure has lower coupling loss and greater manufacturing tolerance compared to the direct coupling structure. The side coupling loss for PMMA material-based devices, NOA material-based devices, and SU-8 material-based devices is 0.104 dB, 0.294 dB, and 0.618 dB, respectively. The sensitivity (S) values of the three hybrid devices are -6.85 nm/K, -6.48 nm/K, and -2.30 nm/K, which are an order of magnitude higher than those of an all-polymer waveguide temperature sensor. We calculated the temperature responsivity (RT) (FSR→∞) of the three devices as 13.16 × 10-5 K, 32.20 × 10-5 K, and 20.20 × 10-5 K, suggesting that high thermo-optic coefficient polymer materials and the hybrid integration method have a promising application in the field of on-chip temperature sensing.

13.
Micromachines (Basel) ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064434

RESUMEN

Temperature can reflect vital activities, and researchers have attempted to guide Chinese medicine diagnosis and treatment by observing acupoint temperature changes. Integrating a temperature sensor at the needle tip enables in situ acupoint temperature measurement. However, the sensor needles for acupoint temperature monitoring designed in previous studies were fabricated by manually soldering thermistor beads and metal wires, making mass production difficult. In this work, using MEMS manufacturing technology, a flexible temperature sensor that can be integrated at the needle tip is proposed and can be mass-produced on silicon wafers. The sensor uses a Pt thermistor as the temperature-sensing element and has a slender flexible structure with dimensions of 125 µm width by 3.2 cm length. As the sensor is inserted into a hollow needle, the Pt thermistor is glued to the needle tip. In the temperature range of 30 °C to 50 °C, the fabricated temperature sensor has a sensitivity of 5.00 Ω∙°C-1, a nonlinearity of ±0.39%FS, and a repeatability error of ±2.62%FS. Additionally, the sensor has been applied to in vivo acupoint temperature monitoring experiments in rats and demonstrated good performance, suggesting its promise for future research on acupoint temperature.

14.
Small ; : e2404080, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923218

RESUMEN

Functional fibers composed of textiles are considered a promising platform for constructing electronic skin (e-skin). However, developing robust electronic fibers with integrated multiple functions remains a formidable task especially when a complex service environment is concerned. In this work, a continuous and controllable strategy is demonstrated to prepare e-skin-oriented ceramic fibers via coaxial wet spinning followed by cold isostatic pressing. The resulting core-shell structured fiber with tightly compacted Al-doped ZnO nanoparticles in the core and highly ordered aramid nanofibers in the shell exhibit excellent tensile strength (316 MPa) with ultra-high elongation (33%). Benefiting from the susceptible contacts between conducting ceramic nanoparticles, the ceramic fiber shows both ultrahigh sensitivity (gauge factor = 2141) as a strain sensor and a broad working range up to 70 °C as a temperature sensor. Furthermore, the tunable core-shell structure of the fiber enables the optimization of impedance matching and attenuation of electromagnetic waves for the corresponding textile, resulting in a minimum reflection loss of -39.1 dB and an effective absorption bandwidth covering the whole X-band. Therefore, the versatile core-shell ceramic fiber-derived textile can serve as a stealth e-skin for monitoring the motion and temperature of robots under harsh conditions.

15.
Carbohydr Polym ; 340: 122258, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857999

RESUMEN

Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.

16.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894474

RESUMEN

A highly sensitivity balloon-like fiber interferometer based on ethanol coating is presented in this paper. The Mach-Zehnder interferometer is formed by bending a single-mode fiber to a balloon-like structure and nested in the Teflon tube. Then, an ethanol solution was filled into the tube of the balloon-like fiber interferometer by the capillary effect. Due to the high sensitivity of the refractive index (RI) of ethanol solutions to temperature, when the external temperature varies, the optical path difference changes. The change in temperature can be detected by the shift in the interference spectrum. Limited by the size of the balloon-like structure, three kinds of these structures with different sensitive lengths were prepared to select the best parameters. The sensitive lengths were 10, 15 and 20 mm, respectively, and the RI detection performance of each structure in 10~26% NaCl solutions was investigated experimentally. The results show that when the sensitive length is 20 mm, the RI sensitivity of the sensor is the highest, which is 212.88 nm/RIU. Ultimately, the sensitive length filled with ethanol is 20 mm. The experimental results show that the temperature sensitivity of the structure is 1.145 nm/°C in the range of 28.1 °C~35 °C, which is 10.3 times higher than that of an unfilled balloon-like structure (0.111 nm/°C). The system has the advantages of low cost and easy fabrication, which can potentially be used in high-precision temperature monitoring processes.

17.
J Pers Med ; 14(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793059

RESUMEN

Background: Acute compartment syndrome is a major surgical emergency with complex pathophysiology and a highly unpredictable pattern of evolution. We hypothesized that the onset of acute compartment syndrome of the leg or forearm is associated with variations in the surface temperature of the distal segment (foot or hand) with a distinct pattern, which acts as an early warning sign. Materials and Methods: We developed a monitoring device that consists of two thermic sensors attached to a modular limb splint, which continuously measure the temperature difference between the proximal and distal regions of the limb (i.e., arm-hand, thigh-foot). Firstly, we investigated both the arm-hand and thigh-foot temperature gradients of hospitalized patients' healthy limbs (43 patients, 56 upper limbs, 64 lower limbs) in order to establish a baseline. Secondly, we examined the correlation between the thermic gradients and intracompartmental pressure values in compartment syndrome limbs (20 patients, 6 upper limbs, 14 lower limbs). Results: For the control group, the mean values for the normal limb thermic gradients were -0.17 °C for the upper limbs. and 0.03 °C for the lower limbs. In the impending compartment syndrome group (defined by intracompartmental pressure values), the mean index was -0.38 °C. In the fully developed compartment syndrome group, the mean value was 4.11 °C. Discussions: Analysis was performed using the ANOVA one-way statistical method. This showed significant differences between the compartment syndrome group and the impending and control groups. A decreasing trend in the thermic gradient in patients with impending compartment syndrome compared with the control group was noted. Conclusions: The thermic gradient of limbs presenting signs of impending compartment syndrome decreases as a result of the increased temperature of the distal segment. This pattern can be used as an early diagnostic method for acute compartment syndrome. This technique is non-invasive and bears no risk to the patient, allowing facile continuous monitoring during immobilization.

18.
Micromachines (Basel) ; 15(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38793128

RESUMEN

Continuous monitoring of vital signs based on advanced sensing technologies has attracted extensive attention due to the ravages of COVID-19. A maintenance-free and low-cost passive wireless sensing system based on surface acoustic wave (SAW) device can be used to continuously monitor temperature. However, the current SAW-based passive sensing system is mostly designed at a low frequency around 433 MHz, which leads to the relatively large size of SAW devices and antenna, hindering their application in wearable devices. In this paper, SAW devices with a resonant frequency distributed in the 870 MHz to 960 MHz range are rationally designed and fabricated. Based on the finite-element method (FEM) and coupling-of-modes (COM) model, the device parameters, including interdigital transducer (IDT) pairs, aperture size, and reflector pairs, are systematically optimized, and the theoretical and experimental results show high consistency. Finally, SAW temperature sensors with a quality factor greater than 2200 are obtained for real-time temperature monitoring ranging from 20 to 50 °C. Benefitting from the higher operating frequency, the size of the sensing system can be reduced for human body temperature monitoring, showing its potential to be used as a wearable monitoring device in the future.

19.
Materials (Basel) ; 17(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38793497

RESUMEN

The high-temperature stability of RuAl-based electrodes for application in microelectronic devices is analyzed for long-term duration. The electrodes are prepared on Ca3TaGa3Si2O14 (CTGS) substrates using SiO2 and Al-N-O cover and barrier layers as oxidation protection. The samples are annealed at 600, 700, or 800 °C in air for 192 h. Minor degradation is observed after thermal loading at 700 °C. The annealing at 800 °C for 192 h leads to a partial oxidation of the Al in the extended contact pad and to a complete oxidation of the Al within the structured interconnect electrodes. The different degradation of the interconnect electrodes and the contact pads is caused by their different lateral dimensions. In summary, long-term high-temperature stability is demonstrated up to at least 700 °C in air. Less oxidizing atmospheres should allow the application at higher temperatures and for a significantly longer duration.

20.
Sensors (Basel) ; 24(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793882

RESUMEN

In this work, we experimentally analyzed and demonstrated the performance of an in-line Mach-Zehnder interferometer in the visible region, with an LED light source. The different waist diameter taper and asymmetric core-offset interferometers proposed used a single-mode fiber (SMF). The visibility achieved was V = 0.14 with an FSR of 23 nm for the taper MZI structure and visibilities of V = 0.3, V = 0.27, and V = 0.34 with FSRs of 23 nm, 17 nm, and 8 nm and separation lengths L of 2.5 cm, 4.0 cm, and 5.0 cm between the core-offset structure, respectively. The experimental investigation of the response to the temperature sensor yielded values from 50 °C to 300 °C; the sensitivity obtained was 3.53 a.u./°C, with R2 of 0.99769 and 1% every 1 °C in the transmission. For a range of 50 °C to 150 °C, 20.3 pm/°C with a R2 of 0.96604 was obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA