Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Infect Immun ; 91(7): e0009623, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37255490

RESUMEN

All members of the family Chlamydiaceae have lipopolysaccharides (LPS) that possess a shared carbohydrate trisaccharide antigen, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) that is functionally uncharacterized. A single gene, genus-specific epitope (gseA), is responsible for attaching the tri-Kdo to lipid IVA. To investigate the function of Kdo in chlamydial host cell interactions, we made a gseA-null strain (L2ΔgseA) by using TargeTron mutagenesis. Immunofluorescence microscopy and immunoblotting with a Kdo-specific monoclonal antibody demonstrated that L2ΔgseA lacked Kdo. L2ΔgseA reacted by immunoblotting with a monoclonal antibody specific for a conserved LPS glucosamine-PO4 epitope, indicating that core lipid A was retained by the mutant. The mutant strain produced a similar number of inclusions as the parental strain but yielded lower numbers of infectious elementary bodies. Transmission electron microscopy of L2ΔgseA-infected cells showed atypical developmental forms and a reduction in the number of elementary bodies. Immunoblotting of dithiothreitol-treated L2ΔgseA-infected cells lysates revealed a marked reduction in outer membrane OmcB disulfide cross-linking, suggesting that the elementary body outer membrane structure was affected by the lack of Kdo. Notably, lactic acid dehydrogenase release by infected cells demonstrated that L2ΔgseA was significantly more cytotoxic to host cells than the wild type. The cytotoxic phenotype may result from an altered outer membrane biogenesis structure and/or function or, conversely, from a direct pathobiological effect of Kdo on an unknown host cell target. These findings implicate a previously unrecognized role for Kdo in host cell interactions that facilitates postinfection host cell survival.


Asunto(s)
Chlamydia trachomatis , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Secuencia de Carbohidratos , Epítopos , Azúcares Ácidos , Anticuerpos Monoclonales
2.
Curr Protoc ; 2(9): e532, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36066245

RESUMEN

Targetron technology, a gene-editing approach based on the use of mobile group II introns, is particularly useful for bacterial strains deficient in homologous recombination. Specifically, the Ll.LtrB intron from Lactococcus lactis can be used in a wide range of species and can be easily retargeted, that is, modified for integration into any locus of interest. Targetron technology is thus a powerful tool for generating genomic insertions in a broad range of genetic backgrounds, mainly when no other techniques can be efficiently employed. Notably, the approach can be coupled to CRISPR/Cas9 counterselection of wildtype DNA sequences to decrease the population of unmodified cells and ultimately improve Ll.LtrB insertion efficiency. Here, we describe a step-by-step protocol for delivering exogenous sequences into the genome of Gram-negative bacteria by means of targetron technology and CRISPR/Cas9 counterselection using Pseudomonas putida as a model. We describe the retargeting of the Ll.LtrB intron to the locus selected for insertion, the design of specific spacers for eliminating unmutated cells through CRISPR/Cas9 counterselection, and the cloning of exogenous sequences into Ll.LtrB. We also provide a protocol for delivering a specific cargo to the locus of choice once all necessary components of the system are ready. Lastly, we describe a general protocol for curing the engineered strain of all plasmids. CRISPR/Cas9-enhanced Ll.LtrB insertion can be an efficient alternative for overcoming low recombination-based editing efficiency and can be used in numerous bacterial species. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Retargeting the Ll.LtrB intron to the target locus Support Protocol 1: Preparation of competent E. coli Basic Protocol 2: Design and cloning of CRISPR spacers to counterselect Ll.LtrB insertions Support Protocol 2: Interference assay to check efficiency of selected spacers Basic Protocol 3: Cloning cargos into Ll.LtrB Basic Protocol 4: Ll.LtrB/CRISPR/Cas9-mediated insertion Basic Protocol 5: Curing the engineered strain of plasmids.


Asunto(s)
Elementos Transponibles de ADN , Lactococcus lactis , Bacterias/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Lactococcus lactis/genética
3.
Cell ; 185(20): 3671-3688.e23, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36113466

RESUMEN

Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase Î¸ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.


Asunto(s)
ADN Polimerasa Dirigida por ARN , Retroelementos , Alanina/genética , Reparación del ADN por Unión de Extremidades , Reparación del ADN , ARN Polimerasas Dirigidas por ADN/genética , Humanos , Intrones , Isoleucina/genética , ADN Polimerasa Dirigida por ARN/química
4.
Front Mol Biosci ; 9: 916157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865004
5.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 915-924, 2022 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-35355464

RESUMEN

Group Ⅱ introns are self-splicing ribozymes, which insert directly into target sites in DNA with high frequency through "retrohoming". They specifically and efficiently recognize and splice DNA target sites, endowing themselves with great potential in genetic engineering. This paper reviewed the gene targeting principle of group Ⅱ introns and the application in microbial genetic modification, and then analyzed the limitations of them in multi-functional gene editing and eukaryotes based on the "retrohoming" characteristics and the dependence on high Mg2+ concentration. Finally, we dissected the potential of group Ⅱ introns in the development of novel gene editing tools based on our previous research outcome and the structural characteristics of the introns, hoping to provide a reference for the application of group Ⅱ introns in biotechnology.


Asunto(s)
ARN Catalítico , ADN , Eucariontes , Marcación de Gen , Intrones/genética , ARN Catalítico/genética
6.
Chinese Journal of Biotechnology ; (12): 915-924, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-927754

RESUMEN

Group Ⅱ introns are self-splicing ribozymes, which insert directly into target sites in DNA with high frequency through "retrohoming". They specifically and efficiently recognize and splice DNA target sites, endowing themselves with great potential in genetic engineering. This paper reviewed the gene targeting principle of group Ⅱ introns and the application in microbial genetic modification, and then analyzed the limitations of them in multi-functional gene editing and eukaryotes based on the "retrohoming" characteristics and the dependence on high Mg2+ concentration. Finally, we dissected the potential of group Ⅱ introns in the development of novel gene editing tools based on our previous research outcome and the structural characteristics of the introns, hoping to provide a reference for the application of group Ⅱ introns in biotechnology.


Asunto(s)
ADN , Eucariontes , Marcación de Gen , Intrones/genética , ARN Catalítico/genética
7.
ACS Synth Biol ; 10(10): 2552-2565, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34601868

RESUMEN

Genome editing methods based on group II introns (known as targetron technology) have long been used as a gene knockout strategy in a wide range of organisms, in a fashion independent of homologous recombination. Yet, their utility as delivery systems has typically been suboptimal due to the reduced efficiency of insertion when carrying exogenous sequences. We show that this limitation can be tackled and targetrons can be adapted as a general tool in Gram-negative bacteria. To this end, a set of broad-host-range standardized vectors were designed for the conditional expression of the Ll.LtrB intron. After establishing the correct functionality of these plasmids in Escherichia coli and Pseudomonas putida, we created a library of Ll.LtrB variants carrying cargo DNA sequences of different lengths, to benchmark the capacity of intron-mediated delivery in these bacteria. Next, we combined CRISPR/Cas9-facilitated counterselection to increase the chances of finding genomic sites inserted with the thereby engineered introns. With these novel tools, we were able to insert exogenous sequences of up to 600 bp at specific genomic locations in wild-type P. putida KT2440 and its ΔrecA derivative. Finally, we applied this technology to successfully tag P. putida with an orthogonal short sequence barcode that acts as a unique identifier for tracking this microorganism in biotechnological settings. These results show the value of the targetron approach for the unrestricted delivery of small DNA fragments to precise locations in the genomes of Gram-negative bacteria, which will be useful for a suite of genome editing endeavors.


Asunto(s)
Sistemas CRISPR-Cas , ADN/administración & dosificación , Pseudomonas putida/genética , ADN/genética , Código de Barras del ADN Taxonómico , Edición Génica/métodos , Genes Bacterianos , Intrones , Plásmidos
8.
Microbiologyopen ; 10(2): e1170, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33970545

RESUMEN

Tularemia is a zoonotic disease of global proportions. Francisella tularensis subspecies tularensis (type A) and holarctica (type B) cause disease in healthy humans, with type A infections resulting in higher mortality. Repeated passage of a type B strain in the mid-20th century generated the Live Vaccine Strain (LVS). LVS remains unlicensed, does not protect against high inhalational doses of type A, and its exact mechanisms of attenuation are poorly understood. Recent data suggest that live attenuated vaccines derived from type B may cross-protect against type A. However, there is a dearth of knowledge regarding virulent type B pathogenesis and its capacity to stimulate the host's innate immune response. We therefore sought to increase our understanding of virulent type B in vitro characteristics using strain OR96-0246 as a model. Adding to our knowledge of innate immune kinetics in macrophages following infection with virulent type B, we observed robust replication of strain OR96-0246 in murine and human macrophages, reduced expression of pro-inflammatory cytokine genes from "wild type" type B-infected macrophages compared to LVS, and delayed macrophage cell death suggesting that virulent type B may suppress macrophage activation. One disruption in LVS is in the gene encoding the chloride transporter ClcA. We investigated the role of ClcA in macrophage infection and observed a replication delay in a clcA mutant. Here, we propose its role in acid tolerance. A greater understanding of LVS attenuation may reveal new mechanisms of pathogenesis and inform strategies toward the development of an improved vaccine against tularemia.


Asunto(s)
Proteínas Bacterianas/inmunología , Canales de Cloruro/inmunología , Francisella tularensis/inmunología , Inmunidad Innata , Tularemia/inmunología , Tularemia/microbiología , Animales , Proteínas Bacterianas/genética , Canales de Cloruro/genética , Modelos Animales de Enfermedad , Francisella tularensis/clasificación , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Humanos , Cinética , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL
9.
Methods Mol Biol ; 2042: 165-184, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31385276

RESUMEN

Chlamydia trachomatis is an important human pathogen that prior to 2011 was largely intractable to genetic manipulation. Here we describe the application of a group II intron, referred to as TargeTron, for site-specific insertional inactivation of target genetic loci in the obligate, intracellular bacteria C. trachomatis. In this chapter, we outline the methods for intron retargeting, chlamydia transformation, and mutant verification. We also outline a method for complementation of TargeTron mutants. Furthermore, we discuss potential pitfalls and alternative strategies for generating mutants with TargeTron technology.


Asunto(s)
Chlamydia trachomatis/genética , Marcación de Gen/métodos , Mutagénesis Insercional/métodos , Proteínas Bacterianas/genética , Infecciones por Chlamydia/microbiología , Humanos , Intrones
10.
ACS Synth Biol ; 8(9): 2186-2193, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31419111

RESUMEN

Group II introns were developed some time ago as tools for the construction of knockout mutants in a wide range of organisms, ranging from Gram-positive and Gram-negative bacteria to human cells. Utilizing these introns is advantageous because they are independent of the host's DNA recombination machinery, they can carry heterologous sequences (and thus be used as vehicles for gene delivery), and they can be easily retargeted for subsequent insertions of additional genes at the user's will. Alas, the use of this platform has been limited, as insertion efficiencies greatly change depending on the target sites and cannot be predicted a priori. Moreover, the ability of introns to perform their own splicing and integration is compromised when they carry foreign sequences. To overcome these limitations, we merged the group II intron-based TargeTron system with CRISPR/Cas9 counterselection. To this end, we first engineered a new group-II intron by replacing the retrotransposition-activated selectable marker (RAM) with ura3 and retargeting it to a new site in the lacZ gene of E. coli. Then, we showed that directing CRISPR/Cas9 toward the wild-type sequences dramatically increased the chances of finding clones that integrated the retrointron into the target lacZ sequence. The CRISPR-Cas9 counterselection strategy presented herein thus overcomes a major limitation that has prevented the use of group II introns as devices for gene delivery and genome editing at large in a recombination-independent fashion.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Intrones , Operón Lac/genética , Plásmidos/genética , Plásmidos/metabolismo , Retroelementos/genética
11.
Methods Mol Biol ; 2021: 61-76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309496

RESUMEN

Genetic mutation enables the study of the function of specific genes, particularly when a mutant is compared against its isogenic parent. In Proteus mirabilis bacteria, traditional allelic exchange mutation is labor-intensive and has a high failure rate in some strains. Likewise, there is no working protocol for lambda red recombinase-based mutation in P. mirabilis. Here we describe an alternative method of insertional mutagenesis based on retargeting of group II introns. The protocol includes steps to generate single or multiple mutations, with the possibility to delete intervening sequences of DNA.


Asunto(s)
Mutagénesis Insercional/métodos , Proteus mirabilis/genética , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Transformación Bacteriana
12.
BMC Microbiol ; 16(1): 258, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814687

RESUMEN

BACKGROUND: The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. RESEARCH: The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. CONCLUSIONS: The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.


Asunto(s)
Bacterias/genética , Bacterias/patogenicidad , Ingeniería Genética , Genoma Bacteriano , Biología Sintética/instrumentación , Biología Sintética/métodos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/fisiología , Redes Reguladoras de Genes , Humanos , Terapia de Fagos , Prevalencia , Percepción de Quorum , ARN Bacteriano , Recombinación Genética , Virulencia
13.
Anaerobe ; 34: 34-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25881497

RESUMEN

Clostridium perfringens, a strictly anaerobic microorganism and inhabitant of the human intestine, has been shown to produce an azoreductase enzyme (AzoC), an NADH-dependent flavin oxidoreductase. This enzyme reduces azo dyes into aromatic amines, which can be carcinogenic. A significant amount of work has been completed on the activity of AzoC. Despite this, much is still unknown, including whether azoreduction of these dyes occurs intracellularly or extracellulary. A physiological study of C. perfringens involving the effect of azo dye exposure was completed to answer this question. Through exposure studies, azo dyes were found to cause cytoplasmic protein release, including AzoC, from C. perfringens in dividing and non-dividing cells. Sulfonation (negative charge) of azo dyes proved to be the key to facilitating protein release of AzoC and was found to be azo-dye-concentration-dependent. Additionally, AzoC was found to localize to the Gram-positive periplasmic region. Using a ΔazoC knockout mutant, the presence of additional azoreductases in C. perfringens was suggested. These results support the notion that the azoreduction of these dyes may occur extracellularly for the commensal C. perfringens in the intestine.


Asunto(s)
Compuestos Azo/metabolismo , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/enzimología , NADH NADPH Oxidorreductasas/metabolismo , Sulfonas/metabolismo , Anaerobiosis , Clostridium perfringens/genética , Técnicas de Inactivación de Genes , NADH NADPH Oxidorreductasas/genética , Nitrorreductasas , Proteínas Periplasmáticas/metabolismo
14.
Biotechnol Biofuels ; 8: 36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25763107

RESUMEN

BACKGROUND: Clostridium cellulolyticum and other cellulolytic Clostridium strains are natural producers of lignocellulosic biofuels and chemicals via the consolidated bioprocessing (CBP) route, and systems metabolic engineering is indispensable to meet the cost-efficient demands of industry. Several genetic tools have been developed for Clostridium strains, and an efficient and stringent inducible genetic operation system is still required for the precise regulation of the target gene function. RESULTS: Here, we provide a stringent arabinose-inducible genetic operation (ARAi) system for C. cellulolyticum, including an effective gene expression platform with an oxygen-independent fluorescent reporter, a sensitive MazF-based counterselection genetic marker, and a precise gene knock-out method based on an inducible ClosTron system. A novel arabinose-inducible promoter derived from Clostridium acetobutylicum is employed in the ARAi system to control the expression of the target gene, and the gene expression can be up-regulated over 800-fold with highly induced stringency. The inducible ClosTron method of the ARAi system decreases the off-target frequency from 100% to 0, which shows the precise gene targeting in C. cellulolyticum. The inducible effect of the ARAi system is specific to a universal carbon source L-arabinose, implying that the system could be used widely for clostridial strains with various natural substrates. CONCLUSIONS: The inducible genetic operation system ARAi developed in this study, containing both controllable gene expression and disruption tools, has the highest inducing activity and stringency in Clostridium by far. Thus, the ARAi system will greatly support the efficient metabolic engineering of C. cellulolyticum and other mesophilic Clostridium strains for lignocellulose bioconversion.

15.
Front Microbiol ; 1: 142, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21607086

RESUMEN

Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA