Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401983, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215611

RESUMEN

Cell surface components, specifically glycans, play a significant role in several biological functions like cell structure, crosstalk between cells, and eventual target recognition of the cells for therapeutics. The dense layer of glycans, i.e., glycocalyx, could differ in taxon, species, and cell type. Glycans are coupled with lipids and proteins to form glycolipids, glycoproteins, proteoglycans, and glycosylphosphatidylinositol-anchored proteins, making their study challenging. However, understanding glycosylation at the cellular level is vital for fundamental research and the advancement of glycan-targeted therapy. Among different pathways, metabolic glycan labelling uses the natural metabolic processes of the cell to introduce abiotic functionality into glycan residues. The Bertozzi group pioneered metabolic oligosaccharide engineering using glycan salvage pathways to convert monosaccharides with unnatural modifications. This eventually results in the probe becoming part of the complex cellular glycan structures via click chemistry using copper. On the other hand, the boronic acid-based probe can recognise carbohydrates in a single step without any chemical modification of the surface. This review discusses the significance of glycans as biomarkers for different diseases and the necessity to evaluate them in situ within the physiological environment. The review also discusses the prospect of this field and its potential applications.

2.
Front Immunol ; 15: 1447280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211043

RESUMEN

Triple-negative breast cancer (TNBC) represents a major therapeutic challenge due to its heterogeneous and aggressive phenotype, and limited target-specific treatment options. The trophoblast cell surface antigen (Trop-2), a transmembrane glycoprotein overexpressed in various cancers, has emerged as a promising target for TNBC. Sacituzumab govitecan (SG), an antibody-drug conjugate (ADC) that targets Trop-2, has recently entered treatment algorithms for advanced and metastatic TNBC, independently from Trop-2 expression status, with manageable toxicity. Despite the impressive results, questions remain unsolved regarding its efficacy, safety profile, and Trop-2 biological role in cancer. Currently, Trop-2 cannot be designated as a predictive biomarker in SG treatment, albeit its expression correlates with disease outcome, yet its levels are not uniform across all TNBCs. Additionally, data regarding Trop-2 expression variations in primary and metastatic sites, and its interplay with other biomarkers are still ambiguous but mandatory in light of future applications of SG in other indications and settings. This poses the questions of a careful evaluation of the efficacy and toxicity profile of SG in such early stages of disease, and in personalized and combinatorial strategies. Research and clinical data are mandatory to address SG drawbacks and minimize its benefits, to realize its full potential as therapeutic agent in different epithelial tumors.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antígenos de Neoplasias , Camptotecina , Moléculas de Adhesión Celular , Inmunoconjugados , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Camptotecina/efectos adversos , Femenino , Inmunoconjugados/uso terapéutico , Inmunoconjugados/efectos adversos , Antígenos de Neoplasias/inmunología , Moléculas de Adhesión Celular/metabolismo , Biomarcadores de Tumor , Animales , Investigación Biomédica Traslacional
3.
Heliyon ; 10(10): e30788, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803973

RESUMEN

Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.

4.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373393

RESUMEN

Amongst the most prevalent malignancies worldwide, head and neck squamous cell carcinoma (HNSCC) is characterized by high morbidity and mortality. The failure of standard treatment modalities, such as surgery, radiotherapy, and chemotherapy, demands the need for in-depth understanding of the complex signaling networks involved in the development of treatment resistance. A tumor's invasive growth and high levels of intrinsic or acquired treatment resistance are the primary causes of treatment failure. This may be a result of the presence of HNSCC's cancer stem cells, which are known to have self-renewing capabilities that result in therapeutic resistance. Using bioinformatics methods, we discovered that elevated expressions of MET, STAT3, and AKT were associated with poor overall survival in HNSCC patients. We then evaluated the therapeutic potential of our newly synthesized small molecule HNC018 towards its potential as a novel anticancer drug. Our computer-aided structure characterization and target identification study predicted that HNC018 could target these oncogenic markers implicated in HNSCC. Subsequently, the HNC018 has demonstrated its anti-proliferative and anticancer activities towards the head and neck squamous cell carcinoma cell lines, along with displaying the stronger binding affinities towards the MET, STAT3, and AKT than the standard drug cisplatin. Reduction in the clonogenic and tumor-sphere-forming ability displays HNC018's role in decreasing the tumorigenicity. Importantly, an vivo study has shown a significant delay in tumor growth in HNC018 alone or in combination with cisplatin-treated xenograft mice model. Collectively with our findings, HNC018 highlights the desirable properties of a drug-like candidate and could be considered as a novel small molecule for treating head and neck squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Multiómica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
5.
Front Oncol ; 13: 1150777, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998466

RESUMEN

Prostate cancer is the most common cancer in men. About 6% of those diagnosed will develop metastatic disease. Unfortunately, metastatic prostate cancer is fatal. Prostate cancer can be castration sensitive or castration resistant. Many treatments have been shown to improve progression free survival and overall survival in metastatic castration resistant prostate cancer (mCRPC). In recent years, studies have been exploring targeting mutations in the DNA Damage Repair (DDR) response that may amplify oncogenes. In this paper, we aim to discuss DDR, new approved targeted therapies, and the most recent clinical trials in the setting of metastatic CRPC.

6.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36088545

RESUMEN

Nowadays, the complexity of disease mechanisms and the inadequacy of single-target therapies in restoring the biological system have inevitably instigated the strategy of multi-target therapeutics with the analysis of each target individually. However, it is not suitable for dealing with the conflicts between targets or between drugs. With the release of high-precision protein structure prediction artificial intelligence, large-scale high-precision protein structure prediction and docking have become possible. In this article, we propose a multi-target drug discovery method by the example of therapeutic hypothermia (TH). First, we performed protein structure prediction for all protein targets of each group by AlphaFold2 and RoseTTAFold. Then, QuickVina 2 is used for molecular docking between the proteins and drugs. After docking, we use PageRank to rank single drugs and drug combinations of each group. The ePharmaLib was used for predicting the side effect targets. Given the differences in the weights of different targets, the method can effectively avoid inhibiting beneficial proteins while inhibiting harmful proteins. So it could minimize the conflicts between different doses and be friendly to chronotherapeutics. Besides, this method also has potential in precision medicine for its high compatibility with bioinformatics and promotes the development of pharmacogenomics and bioinfo-pharmacology.


Asunto(s)
Inteligencia Artificial , Hipotermia Inducida , Cronoterapia de Medicamentos , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular
7.
Curr Top Med Chem ; 22(5): 347-365, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040403

RESUMEN

Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders, including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds, and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.


Asunto(s)
Productos Biológicos , Subtipo H1N1 del Virus de la Influenza A , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/farmacología , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/uso terapéutico
8.
Curr Med Chem ; 28(31): 6307-6322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32503398

RESUMEN

Nanoparticles are widely used in cancer therapy because of their nanoscale, high surface ratio, multifunctionality and so on. With specific construction of nanoparticles, by choosing magnetic nanomaterials or citric acid-coated nanoparticle, scientists can kill tumor cells effectively and accurately, importantly reducing the side effects of conventional chemotherapy. Scientists not only have designed nanoparticles loaded with therapeutic drugs, but also those equipped with targeted molecules. These works have made nanoparticles multifunctional nanocarriers. As multifunctional nanocarriers, nanoparticles play an important role of drug delivery and normally, enabling drug delivery to tumor tissues is a difficult task. During the period of internal circulation, it is hard to maintain the stability of the nanocarriers not attached to normal cells or serum. With the application of stimulus-responsive nanomaterials, scientists have developed many nanocarriers with controllable drug release. These controllable drug delivery systems can quickly respond to microenvironmental changes (PH, enzyme, etc.) or external stimuli (photo, heat, magnetic or electric fields). Thus, to overcome the side effects of controllable drug delivery systems in vivo, in this article, we summarize the various kinds of stimulus-responsive nanocarriers for cancer therapy and discuss the possibilities and challenges in future application.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Nanopartículas , Neoplasias , Preparaciones de Acción Retardada , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Neoplasias/tratamiento farmacológico
9.
Biochem Biophys Res Commun ; 519(4): 689-696, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31542232

RESUMEN

USP46, a member of the ubiquitin-specific protease family, plays essential roles in cancer cell proliferation and metastasis and is used as a candidate target for cancer therapeutics. However, the effects of USP46 on renal cell carcinoma (RCC) and its underlying molecular mechanism remain unknown. In this study, the predictive and prognostic relevance of USP46 in RCC, patient-derived primary tissues, and normal liver tissues obtained from the TCGA dataset were analyzed for the USP46 mRNA levels or prognostic relevance. Gain-of-function or loss-of-function assays were used to evaluate the vital roles of USP46 in tumor cell proliferation and cell migration. As a result, the USP46 expression level in RCC is highly decreased compared to normal tissues, and the Kaplan-Meier curve showed that USP46 high expression patients had good prognoses. Functionally, the forced expression of USP46 significantly restrained tumor cell proliferation, colony formation, and cell migration. The shRNA mediated USP46 knockdown cells exhibited the opposite results. We further showed that ectopically expressed USP46 obviously inhibited the AKT signaling pathway in cancer cells, while USP46 depletion caused a dramatic increase in AKT activity reflected by phosphorylation in the serine and threonine residues of AKT or downstream p70S6K1. Importantly, MK2206, a specific AKT inhibitor, completely counteracted the effects on cell proliferation, cell migration, and AKT activity in the USP46 depletion cells. We thus revealed a novel mechanism of USP46 regulation in RCC, and our data indicate that USP46 is a tumor suppressor in RCC via AKT signaling pathway inactivation.


Asunto(s)
Carcinogénesis/genética , Carcinoma de Células Renales/genética , Endopeptidasas/genética , Neoplasias Renales/genética , Proteínas Proto-Oncogénicas c-akt/genética , Carcinogénesis/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Endopeptidasas/metabolismo , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal/genética
10.
Cancers (Basel) ; 11(10)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561595

RESUMEN

The management of glioblastomas (GBMs) is challenged by the development of therapeutic resistance and early disease recurrence, despite multi-modal therapy. This may be attributed to the presence of glioma stem cells (GSCs) which are known to survive radio- and chemotherapy, by circumventing death signals and inducing cell re-population. Recent findings suggest GSCs may be enriched by certain treatment modality. These necessitate the development of novel therapeutics capable of targeting GBM cell plasticity and therapy-resistant GSCs. Here, aided by computer-assisted structure characterization and target identification, we predicted that a novel 5-(2',4'-difluorophenyl)-salicylanilide derivative, LCC-09, could target dopamine receptors and oncogenic markers implicated in GBMs. Bioinformatics data have indicated that dopamine receptor (DRD) 2, DRD4, CD133 and Nestin were elevated in GBM clinical samples and correlated to Temozolomide (TMZ) resistance and increased aldehyde dehydrogenase (ALDH) activity (3.5-8.9%) as well as enhanced (2.1-2.4-fold) neurosphere formation efficiency in U87MG and D54MG GBM cell lines. In addition, TMZ-resistant GSC phenotype was associated with up-regulated DRD4, Akt, mTOR, ß-catenin, CDK6, NF-κB and Erk1/2 expression. LCC-09 alone, or combined with TMZ, suppressed the tumorigenic and stemness traits of TMZ-resistant GBM cells while concomitantly down-regulating DRD4, Akt, mTOR, ß-catenin, Erk1/2, NF-κB, and CDK6 expression. Notably, LCC-09-mediated anti-GBM/GSC activities were associated with the re-expression of tumor suppressor miR-34a and reversal of TMZ-resistance, in vitro and in vivo. Collectively, these data lay the foundation for further exploration of the clinical feasibility of administering LCC-09 as single-agent or combinatorial therapy for patients with TMZ-resistant GBMs.

11.
Mol Ther ; 27(11): 1878-1891, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31405808

RESUMEN

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) blockade therapy is able to induce long-lasting antitumor responses in a fraction of cancer patients. Nonetheless, there is still room for improvement in the quest for new therapeutic combinations. ICOS costimulation has been underscored as a possible target to include with CTLA-4 blocking treatment. Herein, we describe an ICOS agonistic aptamer that potentiates T cell activation and induces stronger antitumor responses when locally injected at the tumor site in combination with anti-CTLA-4 antibody in different tumor models. Furthermore, ICOS agonistic aptamer was engineered as a bi-specific tumor-targeting aptamer to reach any disseminated tumor lesions after systemic injection. Treatment with the bi-specific aptamer in combination with CTLA-4 blockade showed strong antitumor immunity, even in a melanoma tumor model where CTLA-4 treatment alone did not display any significant therapeutic benefit. Thus, this work provides strong support for the development of combinatorial therapies involving anti-CTLA-4 blockade and ICOS agonist tumor-targeting agents.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Inmunomodulación/efectos de los fármacos , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteína Coestimuladora de Linfocitos T Inducibles/agonistas , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental , Ratones , Modelos Biológicos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Carga Tumoral
12.
Front Microbiol ; 10: 1141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178844

RESUMEN

Current antibiotic treatments fail to eliminate the Clostridium difficile (C. difficile) spores and induce dysbiosis and intestinal inflammation via off-target effect, which causes refractory C. difficile infection raise an unmet need for a spore-specific antimicrobial treatment. We developed a sporicidal and antimicrobial vancomycin-loaded spore-targeting iron oxide nanoparticle (van-IONP) that selectively binds to C. difficile spores. Cryo-electron microscopy showed that vancomycin-loaded nanoparticles can target and completely cover spore surfaces. They not only successfully delayed the germination of the spores but also inhibited ∼50% of vegetative cell outgrowth after 48 h of incubation. The van-IONPs also inhibited the interaction of spores with HT-29 intestinal mucosal cells in vitro. In a murine model of C. difficile infection, the van-IONP significantly protected the mice from infected by C. difficile infection, reducing intestinal inflammation, and facilitated superior mucosal viability compared with equal doses of free vancomycin. This dual-function targeted delivery therapy showed advantages over traditional therapeutics in treating C. difficile infection.

13.
Cancer Drug Resist ; 2(3): 550-567, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-35582574

RESUMEN

Non-protein coding RNAs have emerged as a regulator of cell signaling and cancer progression through regulation of cell proliferation, metastatic burden, and cancer stem cell capacity. A subtype of non-protein coding RNA is long non-protein coding RNA (lncRNA). Besides their aforementioned roles in cancer cell biology, dysregulation of lncRNAs contribute to resistance to therapeutic treatments. A couple of important therapeutic classes are chemotherapy and targeted/hormone therapies. This review highlights the variety of malignancies affected by lncRNA dysregulation and the underlying mechanism causing therapeutic resistance.

14.
Cancers (Basel) ; 10(10)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274248

RESUMEN

Sequential courses of anticancer target therapy lead to selection of drug-resistant cells, which results in continuous decrease of clinical response. Here we present a new approach for predicting effective combinations of target drugs, which act in a synergistic manner. Synergistic combinations of drugs may prevent or postpone acquired resistance, thus increasing treatment efficiency. We cultured human ovarian carcinoma SKOV-3 and neuroblastoma NGP-127 cancer cell lines in the presence of Tyrosine Kinase Inhibitors (Pazopanib, Sorafenib, and Sunitinib) and Rapalogues (Temsirolimus and Everolimus) for four months and obtained cell lines demonstrating increased drug resistance. We investigated gene expression profiles of intact and resistant cells by microarrays and analyzed alterations in 378 cancer-related signaling pathways using the bioinformatical platform Oncobox. This revealed numerous pathways linked with development of drug resistant phenotypes. Our approach is based on targeting proteins involved in as many as possible signaling pathways upregulated in resistant cells. We tested 13 combinations of drugs and/or selective inhibitors predicted by Oncobox and 10 random combinations. Synergy scores for Oncobox predictions were significantly higher than for randomly selected drug combinations. Thus, the proposed approach significantly outperforms random selection of drugs and can be adopted to enhance discovery of new synergistic combinations of anticancer target drugs.

15.
Blood Rev ; 32(1): 8-28, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28802908

RESUMEN

Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas/etiología , Humanos , Familia de Multigenes , Proteínas Proto-Oncogénicas c-bcl-2/genética
16.
Complement Ther Med ; 22(5): 887-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25440380

RESUMEN

OBJECTIVE: Our goal in this study aims to explain the polypharmacological mechanism at the molecular level responsible for the effectiveness of a traditional Chinese medicine (TCM) prescription FTZ to treat hyperlipidemia and related disease. DESIGN: By MDL(®) ISIS_Base 2.5, we constructed a compound database based on the FTZ constituents, which were detected in the rat serum after oral administration of the TCM through ultra-performance liquid chromatography/quadruple-time-of-flight mass-spectrometry (UPLC/Q-TOF-MS/MS) method. After validation of the virtual docking system, we used molecular screening by LigandFit which is a computational method for the shape-directed rapid docking of ligands to target protein active sites, to investigate the interactions between the components in database and lipid-modulating targets in the liver. RESULTS: In the prescription FTZ ingredients, there were sixteen constituents including jatrorrhizine, etc. showed potential effects towards the hyperlipidemia-related targets: HMG-CoA reductase (HMGR), squalene synthase (SQS), oxidosqualene cyclase (OSC), cholesteryl ester transfer protein (CETP), liver X receptor (LXR), farnesoid X receptor (FXR) and peroxisome proliferator-activated receptors (PPARα and PPARγ). Among the eight herbs in prescription FTZ, Rhizoma Coptidis (RC) plays the most important role in whole effect from FTZ on hyperlipidemia related disease. CONCLUSIONS: Our research demonstrated that Chinese medicine formula FTZ has multi-target synergistic effect on hyperlipidemia and suggests the pharmacodynamic material basis could be jatrorrhizine, berberrubine, berberine and salidroside.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Reguladores del Metabolismo de Lípidos/sangre , Reguladores del Metabolismo de Lípidos/farmacología , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Animales , Sinergismo Farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Reguladores del Metabolismo de Lípidos/farmacocinética , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA