Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37368318

RESUMEN

Tandem solar cells are widely considered the industry's next step in photovoltaics because of their excellent power conversion efficiency. Since halide perovskite absorber material was developed, it has been feasible to develop tandem solar cells that are more efficient. The European Solar Test Installation has verified a 32.5% efficiency for perovskite/silicon tandem solar cells. There has been an increase in the perovskite/Si tandem devices' power conversion efficiency, but it is still not as high as it might be. Their instability and difficulties in large-area realization are significant challenges in commercialization. In the first part of this overview, we set the stage by discussing the background of tandem solar cells and their development over time. Subsequently, a concise summary of recent advancements in perovskite tandem solar cells utilizing various device topologies is presented. In addition, we explore the many possible configurations of tandem module technology: the present work addresses the characteristics and efficacy of 2T monolithic and mechanically stacked four-terminal devices. Next, we explore ways to boost perovskite tandem solar cells' power conversion efficiencies. Recent advancements in the efficiency of tandem cells are described, along with the limitations that are still restricting their efficiency. Stability is also a significant hurdle in commercializing such devices, so we proposed eliminating ion migration as a cornerstone strategy for solving intrinsic instability problems.

2.
J Colloid Interface Sci ; 608(Pt 3): 3040-3048, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815080

RESUMEN

High efficient and durable catalysts are always needed to lower the kinetic barriers as well as prolong the service life associated with oxygen evolution reaction (OER). Herein, a sequential synthetic strategy is considered to prepare a hierarchical nanostructure, in which each component can be configured to achieve their full potential so that endows the resulting nanocatalyst a good overall performance. In order to realize this, well-organized cobalt oxide (Co3O4) nanopillars are firstly grown onto ultrathin 1T-molybdenum sulfide (1T-MoS2) to obtain high surface area electrocatalyst, providing electron transfer pathways and structural stability. After that, zeolitic imidazolate framework-67 (ZIF-67) derived carbonization film is further in situ deposited on the surface of nanopillars to generate plentiful active sites, thereby accelerating OER kinetics. Based on the combination of different components, the electron transfer capability, catalytic activity and durability are optimized and fully implemented. The obtained nanocatalyst (defined as 1T-MoS2/Co3O4/CN) exhibits the superior OER catalytic ability with the overpotential of 202 mV and Tafel slope of 57 mV·dec-1 at 10 mA·cm-2 in 0.1 M KOH, and good durability with a minor chronoamperometric decay of 9.15 % after 60,000 s of polarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA