Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Rehabil Assist Technol Eng ; 11: 20556683241283703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290654

RESUMEN

The LSU Community Playground Project (LSUCPP) collaborates with communities (especially the true experts at play, the children) to design and build playgrounds that reflect "the soul of the community." One member of the LSUCPP undertook a research project in an effort to design better playgrounds for use by children who are visually impaired or blind. A recommendation from this research was to provide a 3D-printed tactile map of each play area, such that children who were visually impaired or blind could feel the location and type of equipment and ground surfaces prior to entering a playground, which would enable them to play independently. In this paper, we tell the story of how engineering students and faculty collaborated with children with visual impairments or blindness and their teachers and professional staff to co-design and build a 3D printed tactile map at the Louisiana School for the Visually Impaired (LSVI). Specifically, we detail how we co-designed this artifact, the ways in which the artifact developed due to this inclusive approach, briefly present the design, and discuss how engineers engaged in the design of assistive technologies can put inclusive design principles and community-based design processes into action.

2.
Adv Sci (Weinh) ; : e2400234, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988056

RESUMEN

The dense mechanoreceptors in human fingertips enable texture discrimination. Recent advances in flexible electronics have created tactile sensors that effectively replicate slowly adapting (SA) and rapidly adapting (RA) mechanoreceptors. However, the influence of dermatoglyphic structures on tactile signal transmission, such as the effect of fingerprint ridge filtering on friction-induced vibration frequencies, remains unexplored. A novel multi-layer flexible sensor with an artificially synthesized skin surface capable of replicating arbitrary fingerprints is developed. This sensor simultaneously detects pressure (SA response) and vibration (RA response), enabling texture recognition. Fingerprint ridge patterns from notable historical figures - Rosa Parks, Richard Nixon, Martin Luther King Jr., and Ronald Reagan - are fabricated on the sensor surface. Vibration frequency responses to assorted fabric textures are measured and compared between fingerprint replicas. Results demonstrate that fingerprint topography substantially impacts skin-surface vibrational transmission. Specifically, Parks' fingerprint structure conveyed higher frequencies more clearly than those of Nixon, King, or Reagan. This work suggests individual fingerprint ridge morphological variation influences tactile perception and can confer adaptive advantages for fine texture discrimination. The flexible bioinspired sensor provides new insights into human vibrotactile processing by modeling fingerprint-filtered mechanical signals at the finger-object interface.

3.
ACS Appl Mater Interfaces ; 16(32): 42986-42994, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083246

RESUMEN

A flexible arc-shaped micro-Fiber Bragg Grating (mFBG) array three-dimensional tactile sensor for fingertip signal detection and human pulse monitoring is presented. It is based on a three mFBGs array which is embedded in an arc-shaped poly (dimethylsiloxane) (PDMS) elastomer, which can effectively discriminate the normal force, left force, and right force by monitoring the reflected intensity variation of the three mFBGs. Different from the traditional FBG sensors, this sensor measures force by detecting changes in light intensity, effectively avoiding the wavelength cross-sensitivity impact of temperature variations on the sensor performance. This design strategy simplifies the sensor structure, reduces the system complexity and signal interrogation cost, and enhances reliability and practicality. Through systematic experiments, we successfully validated the sensor's superior performance, achieving a minimum detection force of 0.01 N and providing robust data support for practical applications. In addition, the sensor has been used to monitor human pulse accurately. The successful fabrication and experimental validation of this sensor lay a foundation for its widespread application in fields such as robot perception and human vital signal detection.


Asunto(s)
Dedos , Tacto , Humanos , Dedos/fisiología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Dispositivos Electrónicos Vestibles , Pulso Arterial , Diseño de Equipo , Dimetilpolisiloxanos/química , Tecnología de Fibra Óptica/instrumentación
4.
Materials (Basel) ; 17(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893757

RESUMEN

With the arrival of the Internet of Things era, the demand for tactile sensors continues to grow. However, traditional sensors mostly require an external power supply to meet real-time monitoring, which brings many drawbacks such as short service life, environmental pollution, and difficulty in replacement, which greatly limits their practical applications. Therefore, the development of a passive self-power supply of tactile sensors has become a research hotspot in academia and the industry. In this review, the development of self-powered tactile sensors in the past several years is introduced and discussed. First, the sensing principle of self-powered tactile sensors is introduced. After that, the main performance parameters of the tactile sensors are briefly discussed. Finally, the potential application prospects of the tactile sensors are discussed in detail.

5.
Polymers (Basel) ; 16(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891394

RESUMEN

Touch serves as an important medium for human-environment interaction. The piezoresistive tactile sensor has attracted much attention due to its convenient technology, simple principle, and convenient signal acquisition and analysis. In this paper, conductive beads-on-string polyvinyl alcohol (PVA)/polyaniline doped with dodecyl benzene sulfonic acid (PANI-DBSA) nanofibers were fabricated via the electrospinning technique. Due to the special nanostructure of PVA-coated PANI-DBSA, the tactile sensor presented a wide measuring range of 12 Pa-121 kPa and appreciable sensitivity of 8.576 kPa-1 at 12 Pa~484 Pa. In addition, the response time and recovery time of the sensor were approximately 500 ms, demonstrating promising prospects in the field of tactile sensing for active upper limb prostheses.

6.
Adv Sci (Weinh) ; 11(26): e2400479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696643

RESUMEN

Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.

7.
Adv Sci (Weinh) ; 11(28): e2310017, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747256

RESUMEN

Laser-induced graphene (LIG) technology has provided a new manufacturing strategy for the rapid and scalable assembling of triboelectric nanogenerators (TENG). However, current LIG-based TENG commonly rely on polymer films, e.g., polyimide (PI) as both friction material and carbon precursor of electrodes, which limit the structural diversity and performance escalation due to its incapability of folding and creasing. Using specialized PI paper composed of randomly distributed PI fibers to substantially enhance its foldability, this work creates a new type of TENG, which are structurally foldable and stackable, and performance tailorable. First, by systematically investigating the laser power-regulated performance of single-unit TENG, the open-circuit voltage can be effectively improved. By further exploiting the folding process, multiple TENG units can be assembled together to form multi-layered structures to continuously expand the open-circuit voltage from 5.3 to 34.4 V cm-2, as the increase of friction units from 1 to 16. Last, by fully utilizing the unique structure and performance, representative energy-harvesting and smart-sensing applications are demonstrated, including a smart shoe to recognize running motions and power LEDs, a smart leaf to power a thermometer by wind, a matrix sensor to recognize writing trajectories, as well as a smart glove to recognize different objects.

8.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38470794

RESUMEN

Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human-machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors.

9.
Front Bioeng Biotechnol ; 12: 1359297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425993

RESUMEN

Introduction: In studies of pulse wave analysis, single-channel sensors only adopt single temporal pulse signals without spatial information to show pulse-feeling patterns. Multi-channel arterial pulse signals, also named as three-dimensional pulse images (3DPIs), provide the spatial and temporal characteristics of radial pulse signals. When involving single or few-channel sensors, pressing offsets have substantial impacts on obtaining inaccurate physiological parameters like tidal peak (P2). Methods: This study discovers the pressing offsets in multi-channel pulse signals and analyzes the relationship between the pressing offsets and time of P2 (T2) by qualifying the pressing offsets. First, we employ a data acquisition system to capture 3DPIs. Subsequently, the errorT2 is developed to qualify the pressing offsets. Results: The outcomes display a central low and peripheral high pattern. Additionally, the errorT2 increase as the distances from the artery increase, particularly at the radial ends of the blood flow direction. For every 1 mm increase in distances between sensing elements and center sensing elements, the errorT2 in the radial direction escalates by 4.87%. When the distance is greater than 3.42 mm, the errorT2 experiences a sudden increase. Discussion: The results show that increasing the sensor channels can overcome the pressing offsets in radial pulse signal acquisition.

10.
ACS Appl Mater Interfaces ; 16(6): 7384-7398, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308573

RESUMEN

Flexible capacitive tactile sensors show great promise in personalized healthcare monitoring and human-machine interfaces, but their practical application is normally hindered because they rarely possess the required comprehensive performance, that is, high pressure sensitivity and fast response within a broad pressure range, high structure robustness, performance consistency, etc. This paper aims to engineer flexible capacitive pressure sensors with highly ordered porous dielectric microstructures and a 3D-printing-based fully solution-processable fabrication process. The proposed dielectric layer with uniformly distributed interior microporous can not only increase its compressibility and dynamic response within an extended pressure range but also enlarge its contact area with electrodes, contributing to a simultaneous improvement in the sensitivity, response speed, detection range, and structure robustness. Meanwhile, owing to its superior abilities in complex structure manufacturing and dimension controlling, the proposed 3D-printing-based fabrication process enables the consistent fabrication of the porous microstructure and thus guarantees device consistency. As a result, the prepared pressure sensors exhibit a high sensitivity of 0.21 kPa-1, fast response and relaxation times of 112 and 152 ms, an interface bonding strength of more than 455.2 kPa, and excellent performance consistency (≤5.47% deviation among different batches of sensors) and tunability. Encouraged by this, the pressure sensor is further integrated with a wireless readout circuit and realizes wireless wearable monitoring of various biosignals (pulse waves and heart rate) and body movements (from slight finger touch to large knee bending). Finally, the influence law of the feature parameters of the porous microstructure on device performance is established by the finite element method, paving the way for sensor optimization. This study motivates the development of flexible capacitive pressure sensors toward practical application.

11.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400493

RESUMEN

The Industry 5.0 paradigm has a human-centered vision of the industrial scenario and foresees a close collaboration between humans and robots. Industrial manufacturing environments must be easily adaptable to different task requirements, possibly taking into account the ergonomics and production line flexibility. Therefore, external sensing infrastructures such as cameras and motion capture systems may not be sufficient or suitable as they limit the shop floor reconfigurability and increase setup costs. In this paper, we present the technological advancements leading to the realization of ProxySKIN, a skin-like sensory system based on networks of distributed proximity sensors and tactile sensors. This technology is designed to cover large areas of the robot body and to provide a comprehensive perception of the surrounding space. ProxySKIN architecture is built on top of CySkin, a flexible artificial skin conceived to provide robots with the sense of touch, and arrays of Time-of-Flight (ToF) sensors. We provide a characterization of the arrays of proximity sensors and we motivate the design choices that lead to ProxySKIN, analyzing the effects of light interference on a ToF, due to the activity of other sensing devices. The obtained results show that a large number of proximity sensors can be embedded in our distributed sensing architecture and incorporated onto the body of a robotic platform, opening new scenarios for complex applications.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Percepción del Tacto , Humanos , Robótica/métodos , Tacto , Ergonomía
12.
ACS Appl Mater Interfaces ; 16(8): 11013-11025, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353218

RESUMEN

Industrial robots are the main piece of equipment of intelligent manufacturing, and array-type tactile sensors are considered to be the core devices for their active sensing and understanding of the production environment. A great challenge for existing array-type tactile sensors is the wiring of sensing units in a limited area, the contradiction between a small number of sensing units and high resolution, and the deviation of the overall output pattern due to the difference in the performance of each sensing unit itself. Inspired by the human somatosensory processing hierarchy, we combine tactile sensors with artificial intelligence algorithms to simplify the sensor architecture while achieving tactile resolution capabilities far greater than the number of signal channels. The prepared 8-electrode carbon-based conductive network achieves high-precision identification of 32 regions with 97% classification accuracy assisted by a quadratic discriminant analysis algorithm. Notably, the output of the sensor remains unchanged after 13,000 cycles at 60 kPa, indicating its excellent durability performance. Moreover, the large-area skin-like continuous conductive network is simple to fabricate, cost-effective, and can be easily scaled up/down depending on the application. This work may address the increasing need for simple fabrication, rapid integration, and adaptable geometry tactile sensors for use in industrial robots.

13.
Adv Mater ; 36(11): e2310145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38016424

RESUMEN

Tactile sensory organs for sensing 3D force, such as human skin and fish lateral lines, are indispensable for organisms. With their sensory properties enhanced by layered structures, typical sensory organs can achieve excellent perception as well as protection under frequent mechanical contact. Here, inspired by these layered structures, a split-type magnetic soft tactile sensor with wireless 3D force sensing and a high accuracy (1.33%) fabricated by developing a centripetal magnetization arrangement and theoretical decoupling model is introduced. The 3D force decoupling capability enables it to achieve a perception close to that of human skin in multiple dimensions without complex calibration. Benefiting from the 3D force decoupling capability and split design with a long effective distance (>20 mm), several sensors are assembled in air and water to achieve delicate robotic operation and water flow-based navigation with an offset <1.03%, illustrating the extensive potential of magnetic tactile sensors in flexible electronics, human-machine interactions, and bionic robots.


Asunto(s)
Fenómenos Mecánicos , Tacto , Animales , Humanos , Piel , Agua , Fenómenos Magnéticos
14.
Soft Robot ; 11(2): 270-281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112297

RESUMEN

A human can intuitively perceive and comprehend complicated tactile information because the cutaneous receptors distributed in the fingertip skin receive different tactile stimuli simultaneously and the tactile signals are immediately transmitted to the brain. Although many research groups have attempted to mimic the structure and function of human skin, it remains a challenge to implement human-like tactile perception process inside one system. In this study, we developed a real-time and multimodal tactile system that mimics the function of cutaneous receptors and the transduction of tactile stimuli from receptors to the brain, by using multiple sensors, a signal processing and transmission circuit module, and a signal analysis module. The proposed system is capable of simultaneously acquiring four types of decoupled tactile information with a compact system, thereby enabling differentiation between various tactile stimuli, texture characteristics, and consecutive complex motions. This skin-like three-dimensional integrated design provides further opportunities in multimodal tactile sensing systems.


Asunto(s)
Piel , Percepción del Tacto , Humanos , Tacto/fisiología , Dedos , Encéfalo
15.
ACS Appl Mater Interfaces ; 15(46): 53264-53272, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934693

RESUMEN

Tactile sensors with high softness and multisensory functions are highly desirable for applications in humanoid robotics, smart prosthetics, and human-machine interfaces. Here, we report a soft biomimetic fiber-optic tactile (SBFT) sensor that offers skin-like tactile sensing abilities to perceive and discriminate temperature and pressure. The SBFT sensor is fabricated by encapsulating a macrobent fiber Bragg grating (FBG) in an elastomeric droplet-shaped structure that results in two optical resonances associated with the FBG and excited whispering gallery modes (WGMs) propagating along the bent region. Benefiting from the different thermo-optic and stress-optic effects of FBG and WGM resonances, the pressure and temperature can be fully decoupled with a high precision of 0.2 °C and 0.8 mN, respectively. To achieve a compact system for signal demodulation, a single-cavity dual-comb fiber laser is developed to interrogate the SBFT sensor based on dual-comb spectroscopy, which enables fast spectral sampling with a single photodiode. We show that the SBFT sensor is capable of perceiving pressure, temperature, and hardness in touching soft tissues and human skins, demonstrating great promise for soft tissue palpation and human-like robotic perception.

16.
ACS Appl Mater Interfaces ; 15(47): 55163-55173, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967306

RESUMEN

Advancements in intelligent robots and human-machine interaction necessitate a shift in artificial skins toward multimodal perception. Dual-responsive skins that can detect proximity and pressure information are significant to establishing continuous sensing of interaction processes and extending interactive application scenarios. To address the current limitations of inadequate dual-mode performance, such as limited proximal response change and low tactile sensitivity, this paper presents a bioinspired complementary gradient architecture-enabled (CGA) transduction design and a high-performance dual-responsive skin based on coplanar square-loop electrodes. Through systematic investigation into the transduction of various electrode configurations, comparative results reveal the remarkable potential of coplanar electrodes to deliver superior dual-mode performance without compromise. Simulations and experiments prove that the proposed CGA response mechanism can capture local interface deformation and overall compression signals, further enhancing response sensitivity. The final developed artificial skin is sensitive to external pressure and the approach of objects simultaneously, exhibiting a long detection distance (∼40 mm), a high proximity response (>0.4), and outstanding touch sensitivity (0.131 kPa-1). Furthermore, we demonstrate proof-of-concept applications for the proposed sensing skin in a dual-mode teleoperation interface and adaptive grasping interactions.


Asunto(s)
Piel Artificial , Piel , Humanos , Tacto , Electrodos , Presión
17.
Front Bioeng Biotechnol ; 11: 1264563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829569

RESUMEN

Flexible tactile sensors have the advantages of large deformation detection, high fault tolerance, and excellent conformability, which enable conformal integration onto the complex surface of human skin for long-term bio-signal monitoring. The breakthrough of flexible tactile sensors rather than conventional tactile sensors greatly expanded application scenarios. Flexible tactile sensors are applied in fields including not only intelligent wearable devices for gaming but also electronic skins, disease diagnosis devices, health monitoring devices, intelligent neck pillows, and intelligent massage devices in the medical field; intelligent bracelets and metaverse gloves in the consumer field; as well as even brain-computer interfaces. Therefore, it is necessary to provide an overview of the current technological level and future development of flexible tactile sensors to ease and expedite their deployment and to make the critical transition from the laboratory to the market. This paper discusses the materials and preparation technologies of flexible tactile sensors, summarizing various applications in human signal monitoring, robotic tactile sensing, and human-machine interaction. Finally, the current challenges on flexible tactile sensors are also briefly discussed, providing some prospects for future directions.

18.
ACS Nano ; 17(20): 20153-20166, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37801407

RESUMEN

Flexible tactile sensors show great potential for portable healthcare and environmental monitoring applications. However, challenges persist in scaling up the manufacturing of stable tactile sensors with real-time feedback. This work demonstrates a robust approach to fabricating templated laser-induced graphene (TLIG)-based tactile sensors via laser scribing, elastomer hot-pressing transfer, and 3D printing of the Ag electrode. With different mesh sandpapers as templates, TLIG sensors with adjustable sensing properties were achieved. The tactile sensor obtains excellent sensitivity (52260.2 kPa-1 at a range of 0-7 kPa), a broad detection range (up to 1000 kPa), a low limit of detection (65 Pa), a rapid response (response/recovery time of 12/46 ms), and excellent working stability (10000 cycles). Benefiting from TLIG's high performance and waterproofness, TLIG sensors can be used as health monitors and even in underwater scenarios. TLIG sensors can also be integrated into arrays acting as receptors of the soft robotic gripper. Furthermore, a deep neural network based on the convolutional neural network was employed for texture recognition via a soft TLIG tactile sensing array, achieving an overall classification rate of 94.51% on objects with varying surface roughness, thus offering high accuracy in real-time practical scenarios.


Asunto(s)
Grafito , Robótica , Dispositivos Electrónicos Vestibles , Tacto , Redes Neurales de la Computación
19.
Front Med Technol ; 5: 1238129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854637

RESUMEN

Tissue elasticity remains an essential biomarker of health and is indicative of irregularities such as tumors or infection. The timely detection of such abnormalities is crucial for the prevention of disease progression and complications that arise from late-stage illnesses. However, at both the bedside and the operating table, there is a distinct lack of tactile feedback for deep-seated tissue. As surgical techniques advance toward remote or minimally invasive options to reduce infection risk and hasten healing time, surgeons lose the ability to manually palpate tissue. Furthermore, palpation of deep structures results in decreased accuracy, with the additional barrier of needing years of experience for adequate confidence of diagnoses. This review delves into the current modalities used to fulfill the clinical need of quantifying physical touch. It covers research efforts involving tactile sensing for remote or minimally invasive surgeries, as well as the potential of ultrasound elastography to further this field with non-invasive real-time imaging of the organ's biomechanical properties. Elastography monitors tissue response to acoustic or mechanical energy and reconstructs an image representative of the elastic profile in the region of interest. This intuitive visualization of tissue elasticity surpasses the tactile information provided by sensors currently used to augment or supplement manual palpation. Focusing on common ultrasound elastography modalities, we evaluate various sensing mechanisms used for measuring tactile information and describe their emerging use in clinical settings where palpation is insufficient or restricted. With the ongoing advancements in ultrasound technology, particularly the emergence of micromachined ultrasound transducers, these devices hold great potential in facilitating early detection of tissue abnormalities and providing an objective measure of patient health.

20.
Adv Colloid Interface Sci ; 320: 102988, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690330

RESUMEN

In recent years, flexible devices have gained rapid development with great potential in daily life. As the core component of wearable devices, flexible tactile sensors are prized for their excellent properties such as lightweight, stretchable and foldable. Consequently, numerous high-performance sensors have been developed, along with an array of innovative fabrication processes. It has been recognized that the improvement of the single performance index for flexible tactile sensors is not enough for practical sensing applications. Therefore, balancing and optimization of overall performance of the sensor are extensively anticipated. Furthermore, new functional characteristics are required for practical applications, such as freeze resistance, corrosion resistance, self-cleaning, and degradability. From a bionic perspective, the overall performance of a sensor can be optimized by constructing bionic microstructures which can deliver additional functional features. This review briefly summarizes the latest developments in bionic microstructures for different types of tactile sensors and critically analyzes the sensing performance of fabricated flexible tactile sensors. Based on this, the application prospects of bionic microstructure-based tactile sensors in human detection and human-machine interaction devices are introduced.


Asunto(s)
Biomimética , Dispositivos Electrónicos Vestibles , Humanos , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA