Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275697

RESUMEN

Vehicle scanning methods are gaining popularity because of their ability to identify modal properties of several bridges with only one instrumentation setup, and several methods have been proposed in the last decade. In the numerical models used to develop and validate such methods, bridge damping is often overlooked, and its impact on the efficacy of vehicle scanning methods remains unknown. The present article addresses this knowledge gap by systematically investigating the effects of bridge damping on the efficacy of vehicle scanning methods in identifying the modal properties of bridges. For this, acceleration responses obtained from a numerical model of a bridge and vehicle are used. Four different scenarios are considered where vehicle damping, presence of road roughness, and traffic on the bridge are varied. Bridge damping is modeled using mass-proportional, stiffness-proportional, and Rayleigh damping models. The impacts of ignoring bridge damping or considering one of these damping models on the modal frequencies and mode shapes identified using the vehicle response are investigated by comparing the results. The outcomes of the numerical analysis show that ignoring bridge damping in vehicle scanning applications can significantly increase the efficacy of these methods. They also show that the identifiability of the bridge frequencies and bridge mode shapes from the vehicle response decreases significantly when bridge damping is considered. Further, the damping model used impacts which bridge modes can be identified because different damping models provide different modal damping ratios for each mode. The results highlight the importance of correctly simulating damping behavior of bridges, which is often ignored, to be able to correctly evaluate the efficacy of vehicle scanning methods, and they provide an important stepping stone for future studies in this field.

2.
J Biomed Inform ; 158: 104721, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39265816

RESUMEN

OBJECTIVE: Digital behavior change interventions (DBCIs) are feasibly effective tools for addressing physical activity. However, in-depth understanding of participants' long-term engagement with DBCIs remains sparse. Since the effectiveness of DBCIs to impact behavior change depends, in part, upon participant engagement, there is a need to better understand engagement as a dynamic process in response to an individual's ever-changing biological, psychological, social, and environmental context. METHODS: The year-long micro-randomized trial (MRT) HeartSteps II provides an unprecedented opportunity to investigate DBCI engagement among ethnically diverse participants. We combined data streams from wearable sensors (Fitbit Versa, i.e., walking behavior), the HeartSteps II app (i.e. page views), and ecological momentary assessments (EMAs, i.e. perceived intrinsic and extrinsic motivation) to build the idiographic models. A system identification approach and a fluid analogy model were used to conduct autoregressive with exogenous input (ARX) analyses that tested hypothesized relationships between these variables inspired by Self-Determination Theory (SDT) with DBCI engagement through time. RESULTS: Data from 11 HeartSteps II participants was used to test aspects of the hypothesized SDT dynamic model. The average age was 46.33 (SD=7.4) years, and the average steps per day at baseline was 5,507 steps (SD=6,239). The hypothesized 5-input SDT-inspired ARX model for app engagement resulted in a 31.75 % weighted RMSEA (31.50 % on validation and 31.91 % on estimation), indicating that the model predicted app page views almost 32 % better relative to the mean of the data. Among Hispanic/Latino participants, the average overall model fit across inventories of the SDT fluid analogy was 34.22 % (SD=10.53) compared to 22.39 % (SD=6.36) among non-Hispanic/Latino Whites, a difference of 11.83 %. Across individuals, the number of daily notification prompts received by the participant was positively associated with increased app page views. The weekend/weekday indicator and perceived daily busyness were also found to be key predictors of the number of daily application page views. CONCLUSIONS: This novel approach has significant implications for both personalized and adaptive DBCIs by identifying factors that foster or undermine engagement in an individual's respective context. Once identified, these factors can be tailored to promote engagement and support sustained behavior change over time.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39205640

RESUMEN

Quantitating exercise ventilatory and gas exchange dynamics affords insights into physiological control processes and cardiopulmonary dysfunction. We designed a novel waveform, the chirp waveform, to efficiently extract moderate intensity exercise response dynamics. In the chirp waveform, work rate fluctuates sinusoidally with constant amplitude as sinusoidal period decreases progressively from approximately 8.5 to 1.4 minutes over 30 minutes of cycle ergometry. We hypothesized that response dynamics of pulmonary ventilation (V̇E) and gas exchange (V̇O2 and V̇CO2) extracted from chirp waveform are similar to those obtained from step-wise transitions. Thirty-one participants (14 young-healthy, 7 older-healthy, 10 COPD patients) exercised on three occasions. Participants first performed ramp-incremental exercise for gas exchange threshold (GET) determination. In randomized order, the next two visits involved either chirp or step-wise waveforms. Work rate amplitude (20W to ∼95% GET work rate) and exercise duration (30 min) were the same for both waveforms. A first-order linear transfer function with system gain (G) and time constant (τ) characterized response dynamics. Agreement between model parameters extracted from chirp and step-wise waveforms was established using Bland-Altman analysis and Rothery's Concordance Coefficient (RCC). V̇E, V̇O2, and V̇CO2 Gs showed no systematic bias (p>0.178) and moderate-to-good agreement (RCC>0.772, p<0.01) between waveforms. Similarly, no systematic bias (p=0.815) and good agreement (RCC=0.837, p<0.001) was found for τV̇O2. Despite moderate agreement for τV̇CO2 (RCC=0.794, p<0.001) and τV̇E (RCC=0.722, p=0.083), chirp τ was less (-6.9(11.7)s and -12.2(22.5)s, respectively). We conclude that the chirp waveform is a promising method for measuring exercise response dynamics and investigating physiological control mechanisms.

4.
Nord Pulp Paper Res J ; 39(3): 313-323, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39211428

RESUMEN

In pulp mills, lags obscure the effect of upstream operations on downstream measurements. Here, we estimate lags in a Canadian pulp mill using autoregressive exogenous (ARX) models. First, we show that ARX models can approximate lags in a process simulation that resembles the liquor storage tanks in pulp mills, a major source of lag in the kraft recovery cycle. Then, we use ARX models to estimate the lagged effect of a change in species pulped on as-fired liquor heating value, viscosity, and boiling point rise. Additionally, we compare the predictions of the ARX models to autoregressive (AR) models and a persistence model. The estimated lags between a change in species and heating value (49 h) and boiling point rise (41 h) agree with a detailed simulation of the mill and are close to estimated hydraulic residence times, suggesting that the liquor tanks exhibit imperfect mixing. A lagged effect of species change on viscosity could not be identified. ARX and AR models produce similar predictions that are slightly better than those of a persistence model. Finally, we show that process measurements upstream of units characterized by large residence times will likely provide little benefit to prediction accuracy.

5.
Biomimetics (Basel) ; 9(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38921197

RESUMEN

In this paper, a nonlinear simulation block for a fish robot was designed using MATLAB Simulink. The simulation block incorporated added masses, hydrodynamic damping forces, restoring forces, and forces and moments due to dorsal fins, pectoral fins, and caudal fins into six-degree-of-freedom equations of motion. To obtain a linearized model, we used three different nominal surge velocities (i.e., 0.2 m/s, 0.4 m/s, and 0.6 m/s). After obtaining output responses by applying pseudo-random binary signal inputs to a nonlinear model, an identification tool was used to obtain approximated linear models between inputs and outputs. Utilizing the obtained linearized models, two-degree-of-freedom proportional, integral, and derivative controllers were designed, and their characteristics were analyzed. For the 0.4 m/s nominal surge velocity models, the gain margins and phase margins of the surge, pitch, and yaw controllers were infinity and 69 degrees, 26.3 dB and 85 degrees, and infinity and 69 degrees, respectively. The bandwidths of surge, pitch, and yaw control loops were determined to be 2.3 rad/s, 0.17 rad/s, and 2.0 rad/s, respectively. Similar characteristics were observed when controllers designed for linear models were applied to the nonlinear model. When step inputs were applied to the nonlinear model, the maximum overshoot and steady-state errors were very small. It was also found that the nonlinear plant with three different nominal surge velocities could be controlled by a single controller designed for a linear model with a nominal surge velocity of 0.4 m/s. Therefore, controllers designed using linear approximation models are expected to work well with an actual nonlinear model.

6.
Physiol Meas ; 45(6)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38861999

RESUMEN

Objective.The fact that ramp incremental exercise yields quasi-linear responses for pulmonary oxygen uptake (V˙O2) and heart rate (HR) seems contradictory to the well-known non-linear behavior of underlying physiological processes. Prior research highlights this issue and demonstrates how a balancing of system gain and response time parameters causes linearV˙O2responses during ramp tests. This study builds upon this knowledge and extracts the time-varying dynamics directly from HR andV˙O2data of single ramp incremental running tests.Approach.A large-scale open access dataset of 735 ramp incremental running tests is analyzed. The dynamics are obtained by means of 1st order autoregressive and exogenous models with time-variant parameters. This allows for the estimates of time constant (τ) and steady state gain (SSG) to vary with work rate.Main results.As the work rate increases,τ-values increase on average from 38 to 132 s for HR, and from 27 to 35 s forV˙O2. Both increases are statistically significant (p< 0.01). Further, SSG-values decrease on average from 14 to 9 bpm (km·h-1)-1for HR, and from 218 to 144 ml·min-1forV˙O2(p< 0.01 for decrease parameters of HR andV˙O2). The results of this modeling approach are line with literature reporting on cardiorespiratory dynamics obtained using standard procedures.Significance.We show that time-variant modeling is able to determine the time-varying dynamics HR andV˙O2responses to ramp incremental running directly from individual tests. The proposed method allows for gaining insights into the cardiorespiratory response characteristics when no repeated measurements are available.


Asunto(s)
Prueba de Esfuerzo , Frecuencia Cardíaca , Consumo de Oxígeno , Carrera , Frecuencia Cardíaca/fisiología , Humanos , Carrera/fisiología , Consumo de Oxígeno/fisiología , Factores de Tiempo , Masculino , Adulto
7.
Artículo en Inglés | MEDLINE | ID: mdl-38799405

RESUMEN

Mathematical models that accurately simulate the physiological systems of the human body serve as cornerstone instruments for advancing medical science and facilitating innovative clinical interventions. One application is the modeling of the subglottal tract and neck skin properties for its use in the ambulatory assessment of vocal function, by enabling non-invasive monitoring of glottal airflow via a neck surface accelerometer. For the technique to be effective, the development of an accurate building block model for the subglottal tract is required. Such a model is expected to utilize glottal volume velocity as the input parameter and yield neck skin acceleration as the corresponding output. In contrast to preceding efforts that employed frequency-domain methods, the present paper leverages system identification techniques to derive a parsimonious continuous-time model of the subglottal tract using time-domain data samples. Additionally, an examination of the model order is conducted through the application of various information criteria. Once a low-order model is successfully fitted, an inverse filter based on a Kalman smoother is utilized for the estimation of glottal volume velocity and related aerodynamic metrics, thereby constituting the most efficient execution of these estimates thus far. Anticipated reductions in computational time and complexity due to the lower order of the subglottal model hold particular relevance for real-time monitoring. Simultaneously, the methodology proves efficient in generating a spectrum of aerodynamic features essential for ambulatory vocal function assessment.

8.
ISA Trans ; 150: 374-387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749886

RESUMEN

In this study, a novel estimation scheme is proposed for identifying extended Wiener-Hammerstein systems with hysteresis nonlinearity subject to quantised measurements. The proposed scheme is established in a self-error learning framework to achieve high-performance parameter estimation compared with classic error feedback learning estimation algorithms. Initially, the useful identification data can be extracted from contaminated system data by introducing an adaptive filter. Then, with the help of the filtered data, the identification error expression used to establish the estimator is derived. Subsequently, an online compensation estimation error variable is proposed to eliminate the effect of the regression vector on the convergence performance. A new adaptive law is designed with adaptive recursive gain, considering the compensation estimation error data and parameter initial error data. Under general persistent excitation (PE) condition, the PE condition of the regressor information is verified online, and the estimator convergence is strictly proven. Finally, the statistical results of two illustrated examples and a real-word example are provided to validate the positive features and effectiveness of the proposed estimation scheme.

9.
Ann Biomed Eng ; 52(9): 2556-2568, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38816561

RESUMEN

Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, there has been limited investigation into age-dependent changes in muscle stiffness. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads relevant to standing and the stance phase of walking, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p > 0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p = 0.008), muscle (37%; p = 0.02), and tendon stiffness (22%; p = 0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p = 0.004). Together, these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.


Asunto(s)
Tendón Calcáneo , Envejecimiento , Músculo Esquelético , Humanos , Envejecimiento/fisiología , Anciano , Masculino , Músculo Esquelético/fisiología , Femenino , Adulto , Tendón Calcáneo/fisiología , Tendón Calcáneo/diagnóstico por imagen , Tobillo/fisiología , Articulación del Tobillo/fisiología , Ultrasonografía , Persona de Mediana Edad , Soporte de Peso/fisiología , Tendones/fisiología , Tendones/diagnóstico por imagen
10.
Materials (Basel) ; 17(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38591645

RESUMEN

In this contribution, the development of a 3D-printed soft actuator integrated with shape memory alloys (SMA) wires capable of bending in two directions is presented. This work discusses the design, manufacturing, modeling, simulation, and feedback control of the actuator. The SMA wires are encased in Polytetrafluoroethylene (PTFE) tubes and then integrated into the 3D-printed matrix made of thermoplastic polyurethane (TPU). To measure and control the deformation angle of the soft actuator, a computer vision system was implemented. Based on the experimental results, a mathematical model was developed using the system identification method and simulated to describe the dynamics of the actuator, contributing to the design of a controller. However, achieving precise control of the deformation angle in systems actuated by SMA wires is challenging due to their inherent nonlinearities and hysteretic behavior. A proportional-integral (PI) controller was designed to address this challenge, and its effectiveness was validated through real experiments.

11.
Phys Eng Sci Med ; 47(2): 503-516, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564152

RESUMEN

In the absence of a true gold standard for non-invasive baroreflex sensitivity estimation, it is difficult to quantify the accuracy of the variety of techniques used. A popular family of methods, usually entitled 'sequence methods' involves the extraction of (apparently) correlated sequences from blood pressure and RR-interval data and the subsequent fitting of a regression line to the data. This paper discusses the accuracy of sequence methods from a system identification perspective, using both data generated from a known mathematical model and spontaneous baroreflex data. It is shown that sequence methods can introduce significant bias in the baroreflex sensitivity estimate, even when great care is taken in sequence selection.


Asunto(s)
Barorreflejo , Presión Sanguínea , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Humanos , Frecuencia Cardíaca/fisiología
12.
Sensors (Basel) ; 24(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38544166

RESUMEN

In this study, we developed a machine learning model for automated seizure detection using system identification techniques on EEG recordings. System identification builds mathematical models from a time series signal and uses a small number of parameters to represent the entirety of time domain signal epochs. Such parameters were used as features for the classifiers in our study. We analyzed 69 seizure and 55 non-seizure recordings and an additional 10 continuous recordings from Thomas Jefferson University Hospital, alongside a larger dataset from the CHB-MIT database. By dividing EEGs into epochs (1 s, 2 s, 5 s, and 10 s) and employing fifth-order state-space dynamic systems for feature extraction, we tested various classifiers, with the decision tree and 1 s epochs achieving the highest performance: 96.0% accuracy, 92.7% sensitivity, and 97.6% specificity based on the Jefferson dataset. Moreover, as the epoch length increased, the accuracy dropped to 94.9%, with a decrease in sensitivity to 91.5% and specificity to 96.7%. Accuracy for the CHB-MIT dataset was 94.1%, with 87.6% sensitivity and 97.5% specificity. The subject-specific cases showed improved results, with an average of 98.3% accuracy, 97.4% sensitivity, and 98.4% specificity. The average false detection rate per hour was 0.5 ± 0.28 in the 10 continuous EEG recordings. This study suggests that using a system identification technique, specifically, state-space modeling, combined with machine learning classifiers, such as decision trees, is an effective and efficient approach to automated seizure detection.


Asunto(s)
Algoritmos , Convulsiones , Humanos , Convulsiones/diagnóstico , Electroencefalografía/métodos , Modelos Teóricos , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador
13.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475145

RESUMEN

In the era of aging civil infrastructure and growing concerns about rapid structural deterioration due to climate change, the demand for real-time structural health monitoring (SHM) techniques has been predominant worldwide. Traditional SHM methods face challenges, including delays in processing acquired data from large structures, time-intensive dense instrumentation, and visualization of real-time structural information. To address these issues, this paper develops a novel real-time visualization method using Augmented Reality (AR) to enhance vibration-based onsite structural inspections. The proposed approach presents a visualization system designed for real-time fieldwork, enabling detailed multi-sensor analyses within the immersive environment of AR. Leveraging the remote connectivity of the AR device, real-time communication is established with an external database and Python library through a web server, expanding the analytical capabilities of data acquisition, and data processing, such as modal identification, and the resulting visualization of SHM information. The proposed system allows live visualization of time-domain, frequency-domain, and system identification information through AR. This paper provides an overview of the proposed technology and presents the results of a lab-scale experimental model. It is concluded that the proposed approach yields accurate processing of real-time data and visualization of system identification information by highlighting its potential to enhance efficiency and safety in SHM by integrating AR technology with real-world fieldwork.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38352168

RESUMEN

This paper presents a novel data-driven approach to identify partial differential equation (PDE) parameters of a dynamical system. Specifically, we adopt a mathematical "transport" model for the solution of the dynamical system at specific spatial locations that allows us to accurately estimate the model parameters, including those associated with structural damage. This is accomplished by means of a newly-developed mathematical transform, the signed cumulative distribution transform (SCDT), which is shown to convert the general nonlinear parameter estimation problem into a simple linear regression. This approach has the additional practical advantage of requiring no a priori knowledge of the source of the excitation (or, alternatively, the initial conditions). By using training data, we devise a coarse regression procedure to recover different PDE parameters from the PDE solution measured at a single location. Numerical experiments show that the proposed regression procedure is capable of detecting and estimating PDE parameters with superior accuracy compared to a number of recently developed machine learning methods. Furthermore, a damage identification experiment conducted on a publicly available dataset provides strong evidence of the proposed method's effectiveness in structural health monitoring (SHM) applications. The Python implementation of the proposed system identification technique is integrated as a part of the software package PyTransKit [1].

15.
Heliyon ; 10(4): e26438, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420485

RESUMEN

Poverty, an intricate global challenge influenced by economic, political, and social elements, is characterized by a deficiency in crucial resources, necessitating collective efforts towards its mitigation as embodied in the United Nations' Sustainable Development Goals. The Gini coefficient is a statistical instrument used by nations to measure income inequality, economic status, and social disparity, as escalated income inequality often parallels high poverty rates. Despite its standard annual computation, impeded by logistical hurdles and the gradual transformation of income inequality, we suggest that short-term forecasting of the Gini coefficient could offer instantaneous comprehension of shifts in income inequality during swift transitions, such as variances due to seasonal employment patterns in the expanding gig economy. System Identification (SI), a methodology utilized in domains like engineering and mathematical modeling to construct or refine dynamic system models from captured data, relies significantly on the Nonlinear Auto-Regressive (NAR) model due to its reliability and capability of integrating nonlinear functions, complemented by contemporary machine learning strategies and computational algorithms to approximate complex system dynamics to address these limitations. In this study, we introduce a NAR Multi-Layer Perceptron (MLP) approach for brief term estimation of the Gini coefficient. Several parameters were tested to discover the optimal model for Malaysia's Gini coefficient within 1987-2015, namely the output lag space, hidden units, and initial random seeds. The One-Step-Ahead (OSA), residual correlation, and residual histograms were used to test the validity of the model. The results demonstrate the model's efficacy over a 28-year period with superior model fit (MSE: 1.14 × 10-7) and uncorrelated residuals, thereby substantiating the model's validity and usefulness for predicting short-term variations in much smaller time steps compared to traditional manual approaches.

16.
ISA Trans ; 146: 582-591, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195292

RESUMEN

In this paper, the novel leader-following tracking control method is proposed for mobile robots, which consists estimation technique of the speed of the leader robot (LR), and a parameter-dependent controller for the follower robot (FR). To estimate the speed of LR, a novel Physics Informed Machine Learning (PIML) is proposed to learn the dynamics of the state observer via the error state model. The dynamics of the state observer in PIML play a significant role for stable learning and state estimation of uncertain models. The gain of the parameter-dependent controller is determined by the convex combination of the robust control technique via the polytopic model. Finally, the tracking performance of the proposed method is verified through the simulation and experiment.

17.
Bioinspir Biomim ; 19(2)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38286005

RESUMEN

This paper presents the design and experimental verification of a parallel elastic robotic leg mechanism that aims to capture the dynamics of the linear mass-spring-damper model. The mechanism utilizes a wrapping cam mechanism to linearize the non-linear force resulting from the elongation of the parallel elastic element. Firstly, we explain the desired dynamics of the mass-spring-damper model, including the impact transitions, and the design of the wrapping cam mechanism. We then introduce a system identification procedure to estimate the parameters of the leg mechanism corresponding to the dynamic model. The estimated parameters are tested with a cross-validation approach to evaluate the mechanism's performance in tracking the desired model. The experimental results show that the passive dynamics of the mechanism resemble the linear model as intended. Thus, the robot provides a basis for using parallel elastic actuation while using model-based controllers that benefit the analytic solutions of the linear model.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Robótica/métodos , Modelos Biológicos , Pierna , Fenómenos Biomecánicos
18.
J Clin Monit Comput ; 38(2): 505-518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37934309

RESUMEN

Inter-individual variability in Pharmacokinetic (PK) and Pharmacodynamic (PD) models significantly affects the accuracy of Target Controlled Infusion and closed-loop control of anesthesia. We hypothesize that the novel Eleveld PK model captures more inter-individual variability relevant to both open-loop and closed-loop control design, resulting in reduced variability in PD models identified using the Eleveld PK model's plasma prediction compared to the Schuttler or Schnider PK model. We used a dataset of propofol infusion rates and Depth of Hypnosis measurements across three demographic groups: elderly, obese, and adult. PD models are identified based on plasma concentration prediction using three PK models (Schuttler, Schnider, and Eleveld). Validation methods are presented to confirm acceptable predictive performance and comparable PK-PD model variability within each demographic group. To test our hypothesis, we compared coefficient variations in step responses for open-loop control and multiplicative uncertainty of PD model sets for closed-loop control. Validated PKPD models using the Schuttler and Schnider PK model showed no significant differences in predictive response and multiplicative uncertainty compared to the Eleveld PK model. The coefficient variations in step responses of PD model sets and the frequency ranges, corresponding to uncertainty below one, were comparable for all three PK models. The comparison of the accumulated coefficient of variation in the step-response and the uncertainty of the PD model sets indicated that the Eleveld PK model does not offer any advantage for the design of open-loop or closed-loop control of anesthesia.


Asunto(s)
Anestesia , Propofol , Adulto , Humanos , Anciano , Anestésicos Intravenosos , Infusiones Intravenosas , Propofol/farmacología , Obesidad , Modelos Biológicos
19.
ISA Trans ; 144: 409-418, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977882

RESUMEN

This paper proposes a new constructive identification and adaptive control method for nonlinear pure-feedback systems, which remedies the 'explosion of complexity' and potential control singularity encountered in the traditional adaptive backstepping controllers. First, to avoid using the backstepping recursive design, alternative state variables and the corresponding coordinate transformation are introduced to reformulate the pure-feedback system into an equivalent canonical model. Then, a high-order sliding mode (HOSM) observer is used to reconstruct the unknown states for this canonical model. To remedy the potential singularity in the control, the unknown system dynamics are lumped to derive an alternative identification structure and one-step control synthesis, where two radial basis function neural networks (RBFNN) are adopted to online estimate these lumped dynamics. In this framework, the online estimation of control gain is not in the denominator of controller, and thus the division by zero in the controllers is avoided. Finally, a new online learning algorithm is constructed to obtain the RBFNNs' weights, ensuring the convergence to the neighborhood of true values and allowing accurate identification of unknown dynamics. Theoretical analysis elaborates that the convergence of both the tracking error and the estimation error is obtained simultaneously. Simulations and practical experiments on a hydraulic servo test-rig verify the effectiveness and utility of the suggested methods.

20.
Physiol Meas ; 45(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38086063

RESUMEN

Objective. Understanding a patient's respiratory effort and mechanics is essential for the provision of individualized care during mechanical ventilation. However, measurement of transpulmonary pressure (the difference between airway and pleural pressures) is not easily performed in practice. While airway pressures are available on most mechanical ventilators, pleural pressures are measured indirectly by an esophageal balloon catheter. In many cases, esophageal pressure readings take other phenomena into account and are not a reliable measure of pleural pressure.Approach.A system identification approach was applied to provide accurate pleural measures from esophageal pressure readings. First, we used a closed pressurized chamber to stimulate an esophageal balloon and model its dynamics. Second, we created a simplified version of an artificial lung and tried the model with different ventilation configurations. For validation, data from 11 patients (five male and six female) were used to estimate respiratory effort profile and patient mechanics.Main results.After correcting the dynamic response of the balloon catheter, the estimates of resistance and compliance and the corresponding respiratory effort waveform were improved when compared with the adjusted quantities in the test bench. The performance of the estimated model was evaluated using the respiratory pause/occlusion maneuver, demonstrating improved agreement between the airway and esophageal pressure waveforms when using the normalized mean squared error metric. Using the corrected muscle pressure waveform, we detected start and peak times 130 ± 50 ms earlier and a peak amplitude 2.04 ± 1.46 cmH2O higher than the corresponding estimates from esophageal catheter readings.Significance.Compensating the acquired measurements with system identification techniques makes the readings more accurate, possibly better portraying the patient's situation for individualization of ventilation therapy.


Asunto(s)
Respiración Artificial , Mecánica Respiratoria , Humanos , Masculino , Femenino , Presión , Mecánica Respiratoria/fisiología , Respiración Artificial/métodos , Pulmón , Catéteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA