RESUMEN
REM Sleep Behavioral Disorder (RBD) is a parasomnia marked by the maintenance of muscle tone during REM sleep. Evidence has placed RBD as one of the possible prodromal stages of Parkinson's Disease (PD), but data on the proportion of people with PD who have had symptoms of RBD are limited. This study aimed to investigate the history of symptoms compatible with RBD in a population with PD. The sample was composed by 73 patients with clinically diagnosed PD being followed up at a reference outpatient setting, compared to 73 age- and sex-matched individuals with no PD. The evaluation of symptoms compatible with RBD was performed using the Brazilian version of the RBD Screening Questionnaire (RBDSQ). The prevalence of symptoms compatible with RBD was 65 % for PD and 10.09 % for controls. The RBDSQ score was significantly higher in the PD group (6.03 ± 0.35) in comparison to the control group (2.38 ± 0.23). The odds ratio for presenting previous RBD-compatible symptoms was 12.09 in favor of positive PD cases. PD diagnosis has the following diagnostic properties in relation to presenting RBD symptoms: sensitivity of 0.65, specificity of 0.86, positive predictive value of 0.82 and negative predictive value of 0.71. In conclusion, the proportion of PD patients showing RBD symptoms is high, corroborating the expected neuroprogression of the disease on a case-control design comprising outpatient PD cases. Clinical practitioners should include evaluations of RBD-compatible symptoms during the PD assessment and, if positive, forward to a sleep specialist.
RESUMEN
Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.
Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Sinucleinopatías , Animales , Enfermedad de Parkinson/metabolismo , Receptores Activados del Proliferador del Peroxisoma , Fármacos Neuroprotectores/uso terapéutico , Neuroprotección , Modelos Animales de EnfermedadRESUMEN
The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.
Asunto(s)
Encéfalo , Complejo I de Transporte de Electrón , Mitocondrias , Estrés Oxidativo , Sinucleinopatías , alfa-Sinucleína , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Estrés Nitrosativo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Ratas , Sinucleinopatías/metabolismo , Sinucleinopatías/fisiopatología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismoRESUMEN
The present review examines whether the microRNA 7 (miR-7) holds potential for slowing Parkinson's disease (PD) progression. First, the accurate expression of miR-7 allows for normal development, physiology, and neurogenesis in the central nervous system, also keeping alpha-synuclein (α-Syn) at the physiological level. Second, patients with PD and parkinsonian MPTP-induced animals exhibit a significant decrease of miR-7 in brain areas associated with dopaminergic neurodegeneration. Depletion of miR-7 in the substantia nigra of clinical samples is related to α-Syn accumulation, loss of dopaminergic cells, and reduction of dopamine in the striatum. Therefore, the goal of a miR-7- replacement therapy is to downregulate α-Syn and other PD-related genes, achieving multi-target benefits regarding oxidative stress, mitochondrial health, cell glycolysis, apoptosis, and inhibition of inflammasome activation. While a disease-modifying drug is a major unmet need for the clinical management of PD, an miR-7-replacement therapy presents a striking potential against critical mechanisms of neuropathology. Such innovative treatment would reduce α-Syn accumulation in the Lewy bodies and preserve remaining neurons yet viable at the time of diagnosis, thus slowing disease progression from the early phase of PD characterized by a relatively mild motor impairment to an advanced and more disabling stage.
Asunto(s)
Regulación de la Expresión Génica , Terapia Genética , MicroARNs/genética , Enfermedad de Parkinson/terapia , Animales , Humanos , Enfermedad de Parkinson/genéticaRESUMEN
MAIN CONCLUSION: A recombinant antigen targeting α-synuclein was produced in the plant cell rendering an immunogenic protein capable to induce humoral responses in mice upon oral administration. Synucleinopathies are neurodegenerative diseases characterized by the abnormal accumulation of α-synuclein (α-Syn, a 140 amino acid protein that normally plays various neurophysiologic roles) aggregates. Parkinson's disease (PD) is the synucleinopathy with the highest epidemiologic impact and although its etiology remains unknown, α-Syn aggregation during disease progression pointed out α-Syn as target in the development of immunotherapies. Herein a chimeric protein, comprising the B subunit of the enterotoxin from enterotoxigenic Escherichia coli and α-Syn epitopes, was expressed in the plant cell having the potential to induce humoral responses following oral immunization. This approach will serve as the basis for the development of oral plant-based vaccines against PD with several potential advantages such as low cost, easy scale-up during production, and easy administration.