Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Zoonoses Public Health ; 70(6): 555-567, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37337345

RESUMEN

Morphological and DNA-based complemented approaches were applied for characterization of sympatric populations of Phlebotomus longicuspis and Phlebotomus perniciosus in Morocco. Both sand fly species are generally recorded in sympatry in North Africa but on few occasions have been molecularly characterized. The diagnostic confusion of these species has led to errors in their geographical distribution and probably, in the assignment of their role in the transmission of L. infantum. Sand flies were caught inside households in El Borouj, central Morocco, in 2014-2015. For female sand flies, detection of L. infantum natural infection and blood meal identification were carried out. According to morphological identification, Phlebotomus longicuspis s.l. (34.7%) was the second most abundant Phlebotomus species after P. sergenti, followed by atypical Phlebotomus perniciosus (7.1%); 11.6% of the male specimens of P. longicuspis s.l. were identified as P. longicuspis LCx according to the number of coxite setae. The density of Larroussius species was very high (31 Larroussius/light trap/night) in the peripheral neighbourhood of Oulad Bouchair (p = 0.001) where the first case of cutaneous leishmaniasis due to Leishmania infantum was detected in 2017. Phylogenetic trees based on three independent genes highlighted three well-supported clusters within P. perniciosus complex that could be interpreted as corresponding to P. perniciosus, P. longicuspis s.s. and an undescribed species, all coexisting in sympatry. Some females with typical morphology of P. longicuspis were genetically homologous to P. perniciosus. The taxa cannot be differentiated by morphological methods but characterized by a distinctive genetic lineage for which the synapomorphic characters are described. Leishmania infantum was detected in females of all clusters with a low parasite load. Population genetics will help to assess the threat of the geographical spread of L. infantum in Morocco by determining the density, abundance and vector role of the species of the P. perniciosus complex identified correctly.


Asunto(s)
Leishmania infantum , Phlebotomus , Psychodidae , Femenino , Animales , Phlebotomus/parasitología , Leishmania infantum/genética , Marruecos/epidemiología , Filogenia , Psychodidae/parasitología
2.
Mol Ecol ; 31(24): 6422-6439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170147

RESUMEN

Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. We monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout (Salmo trutta) inhabiting 27 small mountain lakes representing 10 lake systems in central Sweden using >1200 fish per time point. We tested six newly proposed indicators; three were designed for broad, international use in the UN Convention on Biological Diversity (CBD) and are currently applied in several countries. The other three were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations (indicators ΔH and ΔFST , respectively) and assess the effective population size (Ne -indicator). We identified 29 genetically distinct populations, all retained over time. Twelve of the 27 lakes harboured more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The Ne indicator showed values below the threshold (Ne ≤ 500) in 20 populations with five showing Ne < 100. Statistically significant genetic diversity reductions occurred in several populations. Metapopulation structure appears to buffer against diversity loss; applying the indicators to metapopulations suggest mostly acceptable rates of change in all but one system. The CBD indicators agreed with the Swedish ones but provided less detail. All these indicators are appropriate for managers to initiate monitoring of genetic biodiversity.


Asunto(s)
Variación Genética , Genética de Población , Animales , Variación Genética/genética , Trucha/genética , Biodiversidad , Lagos
3.
J Therm Biol ; 98: 102931, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34016353

RESUMEN

This study addresses the need to examine the thermally mediated interactions of fish with their natural environment by investigating the shift in thermal habitat occupation for sympatric Brook and Brown Trout populations. We observed upstream Brook Trout and Brown Trout population shifts during the summer, with thermal habitats showing an increased number of Brown Trout, while some sites also displayed a decrease in the number of Brook Trout. Overall, there was an increased incidence of overlapping habitat occupation at the end of the summer. Brown Trout occupied optimal resting and feeding thermal habitat locations, which can potentially affect growth rates and Brook Trout's survival. Population shifts did not occur at elevated water temperatures as expected but seem driven by temperatures that are optimal for growth. Observed population shifts can lead to increased interactions between the two species throughout the summer. The results provide a better understanding of how future, longer-term, thermal habitat modifications may modify species interactions, which are critical for salmonid conservation efforts.


Asunto(s)
Ecosistema , Estaciones del Año , Temperatura , Trucha , Agua , Animales , Pennsylvania , Dinámica Poblacional , Ríos , Simpatría
4.
Ecol Evol ; 10(4): 1762-1783, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128115

RESUMEN

The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.

5.
Zoology (Jena) ; 136: 125709, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31539860

RESUMEN

Sexual organisms should be better suited than asexual ones in a context of continuous evolution in response to opposite organisms in changing environments ("Red Queen" hypothesis of sex). However, sex also carries costs associated with the maintenance of males and mating (sex cost hypothesis). Here, both non-mutually excluding hypotheses are tested by analysing the infestation by haemogregarines of mixed communities of Darevskia rock lizards composed of parthenogens generated by hybridisation and their bisexual relatives. Prevalence and intensity were recorded from 339 adult lizards belonging to six species from five syntopic localities and analysed using Generalized Mixed-Models (GLMM). Both infestation parameters depended on host-size (like due to longer exposure with age), sex and, for intensity, species. Once accounting for locality and species, males were more parasitized than conspecific females with bisexual species, but no signal of reproductive mode itself on parasitization was recovered. Essentially, male-male interactions increased haemogregarine intensity while females either sexual or asexual had similar reproductive costs when in the same conditions. These findings deviate from the predictions from "Red Queen" dynamics while asymmetric gender costs are here confirmed. Thus, increased parasitization pressure on males adds to other costs, such as higher social interactions and lower fecundity, to explain why parthenogenetic lizards apparently prevail in the short-term evolutionary scale. How this is translated in the long-term requires further phylogenetic analysis.


Asunto(s)
Sangre/parasitología , Coccidios/fisiología , Lagartos/parasitología , Enfermedades Parasitarias en Animales/fisiopatología , Partenogénesis/fisiología , Animales , Femenino , Masculino , Enfermedades Parasitarias en Animales/parasitología , Reproducción
6.
J Fish Biol ; 95(3): 719-742, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31111501

RESUMEN

Anthropogenic acidification in SW-Scotland, from the early 19th Century onwards, led to the extinction of several loch (lake) brown trout (Salmo trutta) populations and substantial reductions in numbers in many others. Higher altitude populations with no stocking influence, which are isolated above natural and artificial barriers and subjected to the greatest effect of acidification, exhibited the least intrapopulation genetic diversity (34% of the allelic richness of the populations accessible to anadromous S. trutta). These, however, were characterised by the greatest interpopulation divergence (highest pairwise DEST 0.61 and FST 0.53 in contemporary samples) based on 16 microsatellite loci and are among the most differentiated S. trutta populations in NW-Europe. Five lochs above impassable waterfalls, where S. trutta were thought to be extinct, are documented as having been stocked in the late 1980s or 1990s. All five lochs now support self-sustaining S. trutta populations; three as a direct result of restoration stocking and two adjoining lochs largely arising from a small remnant wild population in one, but with some stocking input. The genetically unique Loch Grannoch S. trutta, which has been shown to have a heritable increased tolerance to acid conditions, was successfully used as a donor stock to restore populations in two acidic lochs. Loch Fleet S. trutta, which were re-established from four separate donor sources in the late 1980s, showed differential contribution from these ancestors and a higher genetic diversity than all 17 natural loch populations examined in the area. Genetically distinct inlet and outlet spawning S. trutta populations were found in this loch. Three genetically distinct sympatric populations of S. trutta were identified in Loch Grannoch, most likely representing recruitment from the three main spawning rivers. A distinct genetic signature of Loch Leven S. trutta, the progenitor of many Scottish farm strains, facilitated detection of stocking with these strains. One artificially created loch was shown to have a population genetically very similar to Loch Leven S. trutta. In spite of recorded historical supplemental stocking with Loch Leven derived farm strains, much of the indigenous S. trutta genetic diversity in the area remains intact, aside from the effects of acidification induced bottlenecks. Overall genetic diversity and extant populations have been increased by allochthonous stocking.


Asunto(s)
Variación Genética , Ríos/química , Trucha/genética , Alelos , Animales , Conservación de los Recursos Naturales , Europa (Continente) , Genética de Población , Concentración de Iones de Hidrógeno , Repeticiones de Microsatélite , Aislamiento Reproductivo , Escocia
7.
Parasit Vectors ; 11(1): 343, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884224

RESUMEN

BACKGROUND: The oriental rat flea (Xenopsylla cheopis), which infests several mammals, primarily rats (Rattus spp.), is the most notorious vector of human plague. In this study, we measured the genetic differentiation among populations of fleas from the Asian house rat (Rattus tanezumi) and the brown rat (R. norvegicus) using microsatellite markers in order to investigate the extent of host-switching in this parasite. RESULTS: We developed 11 polymorphic microsatellite loci for our study, nine of which showed high potential for inbreeding. AMOVA showed that the majority (84.07%, P < 0.001) of the variation was derived from within populations, followed by variation among groups (14.96%, P < 0.001); in contrast, variation within groups of populations was nearly absent (0.97%, P > 0.05). Analyses of the pairwise fixation index revealed that most of the ten allopatric population pairs but none of the five sympatric population pairs were significantly differentiated. Moreover, based on genetic structure clustering analysis, there was obvious differentiation between allopatric populations but not between sympatric population pairs. CONCLUSIONS: These results indicate the presence of frequent migrations of the oriental rat flea between the sympatric Asian house rat and brown rat, causing a high rate of gene flow and limited genetic differentiation. We suggest that there is no clear boundary limiting the migration of oriental rat fleas between the two hosts, and thus both rat species should be monitored equally for the purposes of plague prevention and control.


Asunto(s)
Infestaciones por Pulgas/veterinaria , Enfermedades de los Roedores/parasitología , Xenopsylla/genética , Animales , Infestaciones por Pulgas/parasitología , Flujo Génico , Especificidad del Huésped , Insectos Vectores/clasificación , Insectos Vectores/genética , Insectos Vectores/fisiología , Repeticiones de Microsatélite , Ratas , Xenopsylla/clasificación , Xenopsylla/fisiología
8.
BMC Evol Biol ; 18(1): 5, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29351730

RESUMEN

BACKGROUND: Tracking newly emergent virulent populations in agroecosystems provides an opportunity to increase our understanding of the co-evolution dynamics of pathogens and their hosts. On the one hand host plants exert selective pressure on pathogen populations, thus dividing them into subpopulations of different virulence, while on the other hand they create an opportunity for secondary contact between the two divergent populations on one tree. The main objectives of the study were to explore whether the previously reported structure between two Venturia inaequalis population types, virulent or avirulent towards Malus x domestica cultivars carrying Rvi6 gene, is maintained or broken several years after the first emergence of new virulent strains in Poland, and to investigate the relationship between 'new' and 'native' populations derived from the same commercial orchards. For this purpose, we investigated the genetic structure of populations of the apple scab fungus, occurring on apple tree cultivars containing Rvi6, Rvi1 or Rvi17 resistance gene or no resistance at all, based on microsatellite data obtained from 606 strains sampled in 10 orchards composed of various host cultivars. RESULTS: Application of genetic distance inferring and clustering methods allowed us to observe clear genetic distinctness of the populations virulent towards cultivars carrying Rvi6 gene from the Rvi6-avirulent populations and substructures within the Rvi6-group as a consequence of independent immigration events followed by rare, long-distance dispersals. We did not observe such a structuring effect of other genes determining apple scab resistance on any other populations, which in turn were genetically homogenous. However, in two orchards the co-occurrence of strains of different virulence pattern on the same trees was detected, blurring the genetic boundaries between populations. CONCLUSIONS: Among several resistance genes studied, only Rvi6 exerted selective pressure on pathogens populations: those virulent toward Rvi6 hosts show unique and clear genetic and virulence pattern. For the first time in commercial Malus x domestica orchards, we reported secondary contacts between populations virulent and avirulent toward Rvi6 hosts. These two populations, first diverged in allopatry, second came into contact and subsequently began interbreeding, in such way that they show unambiguous footprints of gene flow today.


Asunto(s)
Ascomicetos/fisiología , Malus/crecimiento & desarrollo , Malus/microbiología , Enfermedades de las Plantas/microbiología , Árboles/crecimiento & desarrollo , Árboles/microbiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Análisis por Conglomerados , Bases de Datos Genéticas , Frecuencia de los Genes/genética , Variación Genética , Geografía , Haplotipos/genética , Repeticiones de Microsatélite/genética , Polonia , Polimorfismo Genético , Análisis de Componente Principal , Virulencia
9.
Ecol Evol ; 5(15): 3031-45, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26356310

RESUMEN

Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late-generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2-3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.

10.
Evol Appl ; 6(7): 1001-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24187583

RESUMEN

Sympatric populations of phylogenetically related species are often vulnerable to similar communicable diseases. Although some host populations may exhibit spatial structure, other hosts within the community may have unstructured populations. Thus, individuals from unstructured host populations may act as interspecific vectors among discrete subpopulations of sympatric alternate hosts. We used a cervid-bovine tuberculosis (Mycobacterium bovis) system to investigate the landscape-scale potential for bovine tuberculosis transmission within a nonmigratory white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) community. Using landscape population genetics, we tested for genetic and spatial structure in white-tailed deer. We then compared these findings with the sympatric elk population that is structured and which has structure that correlates spatially and genetically to physiognomic landscape features. Despite genetic structure that indicates the white-tailed deer population forms three sympatric clusters, the absence of spatial structure suggested that intraspecific pathogen transmission is not likely to be limited by physiognomic landscape features. The potential for intraspecific transmission among subpopulations of elk is low due to spatial population structure. Given that white-tailed deer are abundant, widely distributed, and exhibit a distinct lack of spatial population structure, white-tailed deer likely pose a greater threat as bovine tuberculosis vectors among elk subpopulations than elk.

11.
Ecol Evol ; 3(9): 3047-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24101993

RESUMEN

Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by F ST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (H E = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (H E = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species.

12.
Evolution ; 50(3): 1265-1279, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28565300

RESUMEN

Anadromous and nonanadromous morphs of the Pacific salmon Oncorhynchus nerka spawn in close physical proximity in tributaries to Takla Lake, British Columbia, yet differ in morphology, gill raker number, allozyme allele frequencies, and reproductive traits. Both morphs are semelparous typically maturing at age four, the anadromous morph (sockeye) at fork lengths of 38-65 cm and the nonanadromous morph (kokanee) at 17-22 cm. When reared together, pure and hybrid morphs also exhibited different growth rates and maturity schedules. Collectively, these large differences between the morphs confirm that sockeye and kokanee exist as reproductively isolated populations. Average gene flow (m) was estimated to be 0.1-0.8% between morphs, 1.7-3.7% among tributaries for kokanee, and 0.3-5.6% among tributaries for sockeye. We conclude that divergence has occurred in sympatry and examine potential isolating mechanisms.

13.
Evolution ; 47(3): 813-832, 1993 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28567890

RESUMEN

The rainbow smelt, Osmerus mordax (Mitchill), is an osmerid fish that exhibits extensive life-history diversity throughout watersheds of northeastern North America. There are both ∗∗∗sea-run (anadromous) and lake-resident (lacustrine) populations and the latter have diversified further into "dwarf-" and "normal-sized" life-history types. Anadromous and lacustrine smelt may inhabit the same watershed and there are several instances where dwarf and normal populations reside within the same lake. We assayed variation among smelt for morphological traits linked to feeding performance in fishes to see if trophic ecology might promote life-history diversity in Osmerus. We also examined mitochondrial DNA (mtDNA) restriction site variation among forms to assess their evolutionary interrelationships. Dwarf smelt had significantly more gill rakers, larger eyes, but shorter upper jaws than normal lake and anadromous smelt. The populations clustered into two trophic "morphotypes"; an anadromous/normal lake group of populations and a group consisting only of dwarf smelt. The mtDNAs of 444 smelt from 16 populations were digested with 12 restriction enzymes revealing 93 composite mtDNA genotypes that clustered (UPGMA) into two major phylogenetic groups differing by 0.78% in sequence. Both genetic groups were present in dwarf and normal smelt as well as in anadromous fish. Further, geographic proximity, rather than trophic morphotype, appeared to be the major determinant of genetic affinities among populations. In two lakes, however, dwarf and normal smelt populations had significantly different mtDNA genotype frequency distributions indicating that the forms are reproductively isolated within both lakes. A clustering analysis of population affinities suggested that the divergence of sympatric dwarf and normal populations had occurred independently in the two lakes. We concluded (1) that trophic ecology is an important factor promoting differentiation in smelt life histories; (2) that smelt ecotypes are polyphyletic and there have been multiple, independent divergences of Osmerus life-history types throughout northeastern North America; and (3) that the biological and mtDNA differences between coexisting dwarf and normal lake smelt argue strongly that their genetic isolation may have developed sympatrically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA