Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Emerg Top Life Sci ; 2(5): 739-749, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33530664

RESUMEN

Cancer is a disease of dysregulated mechanics which alters cell behaviour, compromises tissue structure, and promotes tumour growth and metastasis. In the context of tumour progression, the most widely studied of biomechanical markers is matrix stiffness as tumour tissue is typically stiffer than healthy tissue. However, solid stress has recently been identified as another marker of tumour growth, with findings strongly suggesting that its role in cancer is distinct from that of stiffness. Owing to the relative infancy of the field which draws from diverse disciplines, a comprehensive knowledge of the relationships between solid stress, tumorigenesis, and metastasis is likely to provide new and valuable insights. In this review, we discuss the micro- and macro-scale biomechanical interactions that give rise to solid stresses, and also examine the techniques developed to quantify solid stress within the tumour environment. Moreover, by reviewing the effects of solid stress on tissues, cancer and stromal cells, and signalling pathways, we also detail its mode of action at each level of the cancer cascade.

2.
ACS Appl Mater Interfaces ; 8(48): 33240-33249, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934151

RESUMEN

Perfluorinated ionomers, in particular, Nafion, are a critical component in hydrogen fuel cells as the ion conducting binder within the catalyst layer in which it can be confined to thicknesses on the order of 10 nm or less. It is well reported that many physical properties, such as the Young's modulus, are thickness dependent when the film thickness is less than 100 nm. Here we utilize a cantilever bending methodology to quantify the swelling-induced stresses and relevant mechanical properties of Nafion films as a function of film thickness exposed to cyclic humidity. We observe a factor of 5 increase in the Young's modulus in films thinner than 50 nm and show how this increased stiffness translates to reduced swelling or hydration. The swelling stress was found to increase by a factor of 2 for films approximately 40 nm thick. We demonstrate that thermal annealing enhances the modulus at all film thicknesses and correlate these mechanical changes to chemical changes in the infrared absorption spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA