Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(16): e2306188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417122

RESUMEN

Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.


Asunto(s)
Líquido Extracelular , Melanoma , Agujas , Proteínas S100 , Neoplasias Cutáneas , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patología , Animales , Proteínas S100/metabolismo , Líquido Extracelular/metabolismo , Ratones , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Modelos Animales de Enfermedad , Humanos , Microfluídica/métodos , Piel/metabolismo , Piel/patología
2.
Anal Chim Acta ; 1288: 342152, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220286

RESUMEN

BACKGROUND: Regular blood glucose monitoring is very important for diabetic patients. The composition of skin interstitial fluid (ISF) is similar to that of blood, which can be used for daily blood sugar detection and disease care. However, most methods of ISF extraction have complicated steps, may cause skin damage, and can only extract a limited amount of ISF, resulting in low detection efficiency. Therefore, it is very necessary to develop a detection method that can not only extract a large amount of ISF safely, efficiently, and conveniently, but also realize rapid detection of glucose level in ISF. RESULTS: Here, we developed a gold nanoparticle (AuNP)-based swellable colorimetric MN patch with minimally invasive sampling function and real-time ISF glucose analysis ability. The MN patch could quickly absorb a large amount of skin ISF, and 60.2 mg of ISF was extracted within 10 min in vitro. It was divided into two layers: the tip layer was embedded with AuNPs with glucose oxidase (GOx)-like activity, which catalyzed the oxidation of glucose extracted from ISF and produced hydrogen peroxide (H2O2); horseradish peroxidase (HRP) encapsulated in the backing layer catalyzed the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) by H2O2 to produce oxTMB, which led to a visible color shift in the backing layer. The ISF glucose level was judged by naked eyes and further quantified by color analysis with Image J software. As a result, the colorimetric MN patch successfully identified the normal blood sugar and hyperglycemia state in vivo. SIGNIFICANCE: The colorimetric MN patch combined in-situ colorimetric sensing based on AuNP nanozyme with MN patch, which detected glucose level without blood drawing, increasing patients' compliance and reducing detection steps and time. Compared with the detection methods based on natural nanozymes, our method had better stability and sensitivity to complex environments (extreme pH and high temperature, etc.) in actual detection.


Asunto(s)
Glucemia , Nanopartículas del Metal , Humanos , Glucemia/análisis , Oro/química , Glucosa Oxidasa/química , Automonitorización de la Glucosa Sanguínea , Colorimetría/métodos , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Glucosa/análisis
3.
Bioeng Transl Med ; 8(5): e10413, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693058

RESUMEN

Microneedle (MN)-based diagnostic devices can efficiently access skin interstitial fluid (ISF) for accurate and minimally invasive detection of health-related biomarkers. This work reports a biomarker (i.e., glucose or alcohol) monitoring MN device that is composed of swellable MNs and electrochemical test strip. This device is constructed by adhering MN patch on the electrochemical strips using the chitosan as the connecting layer. The MNs penetrate the skin for extraction of ISF that flows to the backing layer of MNs and is analyzed by the test strip. In the in vitro skin models, this device accurately detects the glucose from 0 mM to 12 mM and alcohol from 0 mM to 20 mM. In vivo experiment shows this MN device is capable of minimally invasive sampling of ISF and analysis of glucose levels to determine the glycemic status of mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA