Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Sci Rep ; 14(1): 21213, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261661

RESUMEN

Although graphene oxide (GO) has extensive recognized application prospects in slow-release fertilizer, plant pest control, and plant growth regulation, the incorporation of GO into nano herbicides is still in its early stages of development. This study selected a pair of sweet corn sister lines, nicosulfuron (NIF)-resistant HK301 and NIF-sensitive HK320, and sprayed them both with 80 mg kg-1 of GO-NIF, with clean water as a control, to study the effect of GO-NIF on sweet corn seedling growth, photosynthesis, chlorophyll fluorescence, and antioxidant system enzyme activity. Compared to spraying water and GO alone, spraying GO-NIF was able to effectively reduce the toxic effect of NIF on sweet corn seedlings. Compared with NIF treatment, 10 days after of spraying GO-NIF, the net photosynthetic rate (A), stomatal conductance (Gs), transpiration rate (E), photosystem II photochemical maximum quantum yield (Fv/Fm), photochemical quenching coefficient (qP), and photosynthetic electron transfer rate (ETR) of GO-NIF treatment were significantly increased by 328.31%, 132.44%, 574.39%, 73.53%, 152.41%, and 140.72%, respectively, compared to HK320. Compared to the imbalance of redox reactions continuously induced by NIF in HK320, GO-NIF effectively alleviated the observed oxidative pressure. Furthermore, compared to NIF treatment alone, GO-NIF treatment effectively increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both lines, indicating GO induced resistance to the damage caused by NIF to sweet corn seedlings. This study will provides an empirical basis for understanding the detoxification promoting effect of GO in NIF and analyzing the mechanism of GO induced allogeneic detoxification in cells.


Asunto(s)
Antioxidantes , Clorofila , Grafito , Herbicidas , Fotosíntesis , Compuestos de Sulfonilurea , Zea mays , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Compuestos de Sulfonilurea/farmacología , Compuestos de Sulfonilurea/toxicidad , Antioxidantes/metabolismo , Grafito/toxicidad , Herbicidas/toxicidad , Herbicidas/farmacología , Piridinas/farmacología , Fluorescencia , Superóxido Dismutasa/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
2.
Front Plant Sci ; 15: 1453031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224849

RESUMEN

In plants, sugar metabolism involves a complex interplay of genetic, molecular and environmental factors. To better understand the molecular mechanisms underlying these processes, we utilized a multi-layered approach that integrated transcriptomic and metabolomic datasets generated from multiple different varieties of sweet corn. Through this analysis, we found 2533 genes that were differentially expressed in the immature kernel tissues of sweet corn, including genes involved in transcriptional regulation, sugar metabolism, primary metabolism, and other processes associated with adaptability of sweet corn. We also detected 31 differential metabolites among the three types of sweet corn. Utilizing an integrated approach encompassing transcriptomics and eGWAS, we elucidated the transcriptional regulatory patterns governing these differential metabolites. Specifically, we delved into the transcriptional modulation of malate- and ubiquitin-associated genes across a range of sweet corn varieties, shedding new light on the molecular mechanisms underlying their regulation. This study provides a framework for future research aimed at improving the current understanding of sugar metabolism and regulatory gene networks in sweet corn, which could ultimately lead to the development of novel strategies for crop improvement.

3.
J Econ Entomol ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099228

RESUMEN

In this study, we investigated the within-field distribution of sweet corn insect pests in relation to adjacent habitats and determined the level and specific causes of defective kernels affecting the quality of the final product at the processing cannery. Sap beetles [primarily Carpophilus lugubris (Murray, 1864) (Coleoptera: Nitidulidae)] and stink bugs [primarily Euschistus servus (Say) ((Heteroptera: Pentatomidae)] infested 27.6% and 73.6% of the fields, respectively. Densities of stink bugs were highest along field edges adjacent to wheat, soybean, vegetable crops, and woodlots. Levels of kernel injury were consistently higher in truckloads of ears harvested first from the outer rows. Earworm damage was confined to the ear tip and had no measurable impact on the quality of the final product. Sap beetles and blemished kernels were the major causes of defective kernels in the cannery, even though stink bugs were more abundant in the fields. Defective kernels were more positively related to physiological blemishes than to other causal factors. For all fields, defective kernel levels averaged less than 1%, resulting in excellent quality of the processed product throughout the entire season. Results provided a better understanding of the quality control issues, resulting in practical implications for improvements in field monitoring and decision-making in the cannery to minimize grading problems.

4.
Physiol Mol Biol Plants ; 30(8): 1265-1276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39184556

RESUMEN

Maize dwarf mosaic virus (MDMV) is one of the most serious viruses of sweet corn. Utilising the process of RNA interference, the exogenous introduction of small RNA molecules mimicking virus-derived small interfering RNA (siRNA) into the plant prior to infection triggers the antiviral RNA silencing effect, thereby promoting more effective antiviral protection. Hence, a treatment with MDMV-derived small RNA was applied to sweet corn plants one day before MDMV virus inoculation. ALEXA FLUOR®488 fluorophore-bound exogenous siRNA was successfully detected inside intact sweet corn cells using confocal fluorescence microscopy. Furthermore, it was demonstrated that the exogenous siRNA treatment led to a notable upregulation of the AGO1, AGO2b, AGO10b, AGO18a, DCL1, DCL3a, DCL4, RDR1, and MOP1 genes within 24 h of the treatment. Overall, exogenous siRNA treatment resulted in better virus control of infected sweet corn plants, as indicated by the lower viral RNA and coat protein levels compared to the infected group without pre-treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01500-2.

5.
Plant Sci ; 348: 112233, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173886

RESUMEN

Tocochromanols, collectively known as Vitamin E, serve as natural lipid-soluble antioxidants that are exclusively obtained through dietary intake in humans. Synthesized by all plants, tocochromanols play an important role in protecting polyunsaturated fatty acids in plant seeds from lipid peroxidation. While the genes involved in tocochromanol biosynthesis have been fully elucidated in Arabidopsis thaliana, Oryza sativa and Zea mays, the genetic basis of tocochromanol accumulation in sweet corn remains poorly understood. This gap is a consequence of limited natural genetic diversity and harvest at immature growth stages. In this study, we conducted comprehensive genome-wide association studies (GWAS) on a sweet corn panel of 295 individuals with a high-density molecular marker set. In total, thirteen quantitative trait loci (QTLs) for individual and derived tocochromanol traits were identified. Our analysis identified novel roles for three genes, ZmCS2, Zmshki1 and ZmB4FMV1, in the regulation of α-tocopherol accumulation in sweet corn kernels. We genetically validated the role of Zmshki1 through the generation of a knock-out line using CRISPR-Cas9 technology. Further gene-based GWAS revealed the function of the canonical tyrosine metabolic enzymes ZmCS2 and Zmhppd1 in the regulation of total tocochromanol content. This comprehensive assessment of the genetic basis for variation in vitamin E content establishes a solid foundation for enhancing vitamin E content not only in sweet corn, but also in other cereal crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Vitamina E , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Vitamina E/metabolismo , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo
6.
Biol Futur ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134924

RESUMEN

Maize dwarf mosaic virus (MDMV) can significantly reduce the growth and development of susceptible varieties of sweet corn. The virus utilises the energy and reserve sources of plant cells to ensure its reproduction in the microspaces formed by cell membranes. Therefore, the severity of stress can be monitored by examining certain physiological changes, for example, changes in the degree of membrane damage caused by lipid peroxidation, as well as changes in the amount of photosynthetic pigments. The activation of antioxidant enzymes (e.g. ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) and the accumulation of phenolic compounds with antioxidant properties can indirectly protect against the oxidative stress caused by the presence of the positive orientation, single-stranded RNA-virus. This study demonstrates the changes in these physiological processes in a sweet corn hybrid (Zea mays cv. saccharata var. Honey Koern.) susceptible to MDMV infection, and suggests that exogenous small RNA treatment can mitigate the damage caused by virus infection.

7.
BMC Plant Biol ; 24(1): 550, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872083

RESUMEN

BACKGROUND: Boron (B) is a micronutrient, but excessive levels can cause phytotoxicity, impaired growth, and reduced photosynthesis. B toxicity arises from over-fertilization, high soil B levels, or irrigation with B-rich water. Conversely, silicon (Si) is recognized as an element that mitigates stress and alleviates the toxic effects of certain nutrients. In this study, to evaluate the effect of different concentrations of Si on maize under boron stress conditions, a factorial experiment based on a randomized complete block design was conducted with three replications in a hydroponic system. The experiment utilized a nutrient solution for maize var. Merit that contained three different boron (B) concentrations (0.5, 2, and 4 mg L-1) and three Si concentrations (0, 28, and 56 mg L-1). RESULTS: Our findings unveiled that exogenous application of B resulted in a substantial escalation of B concentration in maize leaves. Furthermore, B exposure elicited a significant diminution in fresh and dry plant biomass, chlorophyll index, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids, and membrane stability index (MSI). As the B concentration augmented, malondialdehyde (MDA) content and catalase (CAT) enzyme activity exhibited a concomitant increment. Conversely, the supplementation of Si facilitated an amelioration in plant fresh and dry weight, total carbohydrate, and total soluble protein. Moreover, the elevated activity of antioxidant enzymes culminated in a decrement in hydrogen peroxide (H2O2) and MDA content. In addition, the combined influence of Si and B had a statistically significant impact on the leaf chlorophyll index, total chlorophyll (a + b) content, Si and B accumulation levels, as well as the enzymatic activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and H2O2 levels. These unique findings indicated the detrimental impact of B toxicity on various physiological and biochemical attributes of maize, while highlighting the potential of Si supplementation in mitigating the deleterious effects through modulation of antioxidant machinery and biomolecule synthesis. CONCLUSIONS: This study highlights the potential of Si supplementation in alleviating the deleterious effects of B toxicity in maize. Increased Si consumption mitigated chlorophyll degradation under B toxicity, but it also caused a significant reduction in the concentrations of essential micronutrients iron (Fe), copper (Cu), and zinc (Zn). While Si supplementation shows promise in counteracting B toxicity, the observed decrease in Fe, Cu, and Zn concentrations warrants further investigation to optimize this approach and maintain overall plant nutritional status.


Asunto(s)
Boro , Clorofila , Hidroponía , Silicio , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Zea mays/metabolismo , Boro/toxicidad , Boro/metabolismo , Silicio/farmacología , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Malondialdehído/metabolismo , Carotenoides/metabolismo , Antioxidantes/metabolismo , Catalasa/metabolismo
8.
Plant Dis ; : PDIS04240733RE, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38853331

RESUMEN

Bacterial leaf streak (BLS) of corn caused by Xanthomonas vasicola pv. vasculorum was first reported in the United States in 2017. The biology and management of BLS are poorly understood. The objective of this work was to determine the effects of hybrids, foliar treatments, and infection conditions (timing, temperature, and inoculation site) on BLS of sweet corn. Field studies were conducted to determine if hybrid or foliar disease management treatments influenced BLS development and yield. Corn leaves were inoculated in plots with X. vasicola pv. vasculorum, and noninoculated plots were used for comparison. The leaf incidence and severity of BLS differed significantly among sweet corn hybrids, suggesting different levels of susceptibility to BLS. Grain yield was significantly reduced (14.7%) by BLS for one hybrid. The corn growth stage at the time of infection influenced BLS, with incidence and severity significantly greater after inoculation at stage V6 than at V9. Foliar application of Kocide, LifeGard, and Kocide and LifeGard significantly reduced leaf severity compared with nontreated controls in field studies. Kocide significantly reduced leaf incidence, but no treatments significantly increased yield versus controls. In comparisons of inoculation methods in a growth chamber, lesion length on leaves was significantly greater on stalk-inoculated than leaf-inoculated plants. Lesions developed on leaf-inoculated plants only at inoculation sites, whereas lesions developed on stalk-inoculated plants on multiple leaves. In controlled environments, lesion length on leaves was significantly greater at 21°C than at 27 and 32°C. This study expands our understanding of factors that influence the development and management of BLS of sweet corn.

9.
Front Plant Sci ; 15: 1361309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751847

RESUMEN

The identification of sweet corn seed vitality is an essential criterion for selecting high-quality varieties. In this research, a combination of hyperspectral imaging technique and diverse deep learning algorithms has been utilized to identify different vitality grades of sweet corn seeds. First, the hyperspectral data of 496 seeds, including four viability-grade seeds, are extracted and preprocessed. Then, support vector machine (SVM) and extreme learning machine (ELM) are used to construct the classification models. Finally, the one-dimensional convolutional neural networks (1DCNN), one-dimensional long short-term memory (1DLSTM), the CNN combined with the LSTM (CNN-LSTM), and the proposed firefly algorithm (FA) optimized CNN-LSTM (FA-CNN-LSTM) are utilized to distinguish spectral images of sweet corn seeds viability grade. The findings from the experimental analysis indicate that the deep learning models exhibit a significant advantage over traditional machine learning approaches in the discrimination of seed vitality levels, boasting a classification accuracy exceeding 94.26% in test datasets and achieving an accuracy improvement of at least 3% compared to the best-performing machine learning model. Moreover, the performance of the FA-CNN-LSTM model proposed in this study demonstrated a slight superiority over the other three models. Besides, the FA-CNN-LSTM achieved a classification accuracy of 97.23%, representing a significant improvement of 2.97% compared to the lowest-performing CNN and a 1.49% enhancement over the CNN-LSTM. In summary, this study reveals the potential of integrating deep learning with hyperspectral imaging as a promising alternative for discriminating sweet corn seed vitality grade, showcasing its value in agricultural research and cultivar breeding.

10.
J Appl Genet ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733523

RESUMEN

Sweet corn has emerged as a favorite food item worldwide owing to its kernel sweetness. However, traditional sweet corn cultivars are poor in provitamin-A (proA) and essential amino acids, viz., lysine and tryptophan. So far, no sweet corn hybrid with high nutritional qualities has been commercialized elsewhere. Here, we analyzed accumulation of provitamin-A (proA), lysine, and tryptophan in a set of mutant versions of (i) crtRB1-, (ii) o2-, and (iii) crtRB1 + o2-based sweet corn inbreds and hybrids with (iv) traditional sweet corn (wild-type: O2 + CrtRB1). The crtRB1- and crtRB1 + o2-based genotypes possessed significantly higher proA (17.31 ppm) over traditional sweet corn (2.83 ppm), while o2- and crtRB1 + o2-based genotypes possessed significantly higher lysine (0.345%) and tryptophan (0.080%) over traditional sweet corn (lysine 0.169%, tryptophan 0.036%). Late sowing favored high kernel lysine, proA, and green cob yield among hybrids. Sweetness (17.87%) among the improved inbreds and hybrids was comparable to the original sweetcorn genotypes (17.84%). Among the four genotypic classes, crtRB1 + o2-based improved genotypes showed stronger association among traits over genotypes with o2 and crtRB1 genes alone. Significant association was observed among (i) proA and BC (r = 0.99), (ii) proA and BCX (r = 0.93), (iii) lysine and tryptophan (r = 0.99), and (iv) green cob yield with fodder yield (r = 0.73) in sweet corn hybrids. The study demonstrated that combining crtRB1 and o2 genes did not pose any negative impact on nutritional, yield, and agronomic performance. Sweet corn with crtRB1 + o2 assumes significance for alleviating malnutrition through sustainable and cost-effective approach.

11.
Sci Rep ; 14(1): 10791, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734751

RESUMEN

Sweet corn is highly susceptible to the deleterious effects of low temperatures during the initial stages of growth and development. Employing a 56K chip, high-throughput single-nucleotide polymorphism (SNP) sequencing was conducted on 100 sweet corn inbred lines. Subsequently, six germination indicators-germination rate, germination index, germination time, relative germination rate, relative germination index, and relative germination time-were utilized for genome-wide association analysis. Candidate genes were identified via comparative analysis of homologous genes in Arabidopsis and rice, and their functions were validated using quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed 35,430 high-quality SNPs, 16 of which were significantly correlated. Within 50 kb upstream and downstream of the identified SNPs, 46 associated genes were identified, of which six were confirmed as candidate genes. Their expression patterns indicated that Zm11ΒHSDL5 and Zm2OGO likely play negative and positive regulatory roles, respectively, in the low-temperature germination of sweet corn. Thus, we determined that these two genes are responsible for regulating the low-temperature germination of sweet corn. This study contributes valuable theoretical support for improving sweet corn breeding and may aid in the creation of specific germplasm resources geared toward enhancing low-temperature tolerance in sweet corn.


Asunto(s)
Frío , Estudio de Asociación del Genoma Completo , Germinación , Polimorfismo de Nucleótido Simple , Zea mays , Germinación/genética , Zea mays/genética , Zea mays/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Sitios de Carácter Cuantitativo
12.
Mol Biol Rep ; 51(1): 307, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365995

RESUMEN

BACKGROUND: Sweet corn is gaining tremendous demand worldwide due to urbanization and changing consumer preferences. However, genetic improvement in this crop is being limited by narrow genetic base and other undesirable agronomic traits that hinder the development of superior cultivars. The main requirement in this direction is the development of potentially promising parental lines. One of the most important strategies in this direction is to develop such lines from hybrid-oriented source germplasm which may provide diverse base material with desirable biochemical and agro-morphological attributes. METHODS AND RESULTS: The study was undertaken to carry out morphological and biochemical evaluation of 80 early generation inbred lines (S2) of sweet corn that were developed from a cross between two single cross sweet corn hybrids (Mithas and Sugar-75). Moreover, validation of favourable recessive alleles for sugar content was carried out using SSR markers. The 80 sweet corn inbreds evaluated for phenotypic characterization showed wide range of variability with respect to different traits studied. The highest content of total carotenoids was found in the inbred S27 (34 µg g-1) followed by the inbred S65 (31.1 µg g-1). The highest content for total sugars was found in S60 (8.54%) followed by S14 (8.34%). Molecular characterization of 80 inbred lines led to the identification of seven inbreds viz., S21, S28, S47, S48, S49, S53, and S54, carrying the alleles specific to the sugary gene (su1) with respect to the markers umc2061 and bnlg1937. Comparing the results of scatter plot for biochemical and morphological traits, it was revealed that inbreds S9, S23, S27 and S36 contain high levels of total sugars and total carotenoids along with moderate values for amylose and yield attributing traits. CONCLUSION: The inbred lines identified with desirable biochemical and agro-morphological attributes in the study could be utilized as source of favourable alleles in sweet corn breeding programmes after further validation for disease resistance and other agronomic traits. Consequently, the study will not only enhance the genetic base of sweet corn germplasm but also has the potential to develop high-yielding hybrids with improved quality. The inbreds possessing su1 gene on the basis of umc2061 and bnlg1937 markers were also found to possess high sugar content. This indicates the potential of these lines as desirable candidates for breeding programs aimed at improving sweet corn yield and quality. These findings also demonstrate the effectiveness of the molecular markers in facilitating marker-assisted selection for important traits in sweet corn breeding.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Fenotipo , Verduras , Azúcares , Carotenoides
13.
Environ Entomol ; 53(1): 67-76, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38204206

RESUMEN

Euxesta eluta Loew and Chaetopsis massyla Walker (Diptera: Ulidiidae) are primary pests of sweet corn in Florida. Attraction of adult flies to various visual stimuli was evaluated in the laboratory to provide insight into the potential development of enhanced trapping strategies. In assays evaluating different colored sticky traps, more E. eluta were collected on light blue, mid blue, lime green, and orange yellow traps, whereas attraction of C. massyla was greater to lime green and fluorescent green traps. In a comparison of yellow 3-dimensional shapes, more E. eluta were collected on yellow cylinders than on spheres or cubes; however, more C. massyla were collected on cylinders than on cubes or spheres. When colored traps were placed against a white background, more E. eluta were collected on lime green compared with yellow, blue, and orange traps; however, when placed against a black background, attraction to the lime green trap was reduced. Against the white background attraction of C. massyla, was strongest to yellow, then lime green and orange traps, followed by blue, but with a black background, differences between traps collections were reduced. The addition of ultraviolet (UV) reflectance to yellow increased the attraction of E. eluta, but C. massyla were more attracted to yellows without UV reflection or fluorescence. Black patterns on yellow traps affected attraction, with E. eluta more attracted to wide stripes, a large square, or many small squares, whereas C. massyla was more strongly attracted to stripes. Utilization of these visual attributes could be useful in improving surveillance for these species.


Asunto(s)
Compuestos de Calcio , Dípteros , Óxidos , Animales , Florida , Verduras , Color , Control de Insectos/métodos
14.
Sci Total Environ ; 912: 169403, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38110092

RESUMEN

The availability of accurate reference evapotranspiration (ETo) data is crucial for developing decision support systems for optimal water resource management. This study aimed to evaluate the accuracy of three empirical models (Hargreaves-Samani (HS), Priestly-Taylor (PT), and Turc (TU)) and three machine learning models (Multiple linear regression (LR), Random Forest (RF), and Artificial Neural Network (NN)) in estimating daily ETo compared to the Penman-Monteith FAO-56 (PM) model. Long-term data from 42 weather stations in Florida were used. Moreover, the effect of ETo model selection on sweet corn irrigation water use was investigated by integrating simulated ETo data from empirical and ML models using the Decision Support System for Agrotechnology Transfer (DSSAT) model at two locations (Citra and Homestead) in Florida. Furthermore, a linear bias correction calibration technique was employed to improve the performance of empirical models. Results were consistent in that the NN and RF models outperformed the empirical models. The empirical models tended to underestimate and overestimate small and high daily ETo values, respectively, with the HS model exhibiting the least accuracy. However, calibrated PT and TU models performed comparably to the ML models. Results also revealed that using an inappropriate ETo model could lead to over-irrigation by up to 54 mm during a single crop season. Overall, ML models have proven reliable alternatives to the PM model, especially in regions with access to long-term data due to their site-independent performance. In areas without long-term data for ML model training and testing, calibrating empirical models is viable, but site-specific calibration is needed. It is important to highlight that distinct plant species exhibit varying transpiration characteristics and, consequently, have different water requirements. These differences play a pivotal role in shaping the overall impact of ETo models on crop water use.

15.
PeerJ ; 11: e16134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144181

RESUMEN

The success of developing prominent hybrids directly depends on the selection of parents with good combining ability which can transfer desirable genes with additive effects to their progeny. The data of 42 hybrids generated using 7 × 7 full diallel design; their seven parents along with three check hybrids were subjected to combining ability analysis from the experiment that was carried out during rainy season 2019. The analysis of variance showed significant general combining ability, and specific combining ability mean sum of squares for all the thirteen characters studied. It is obvious from the results that three lines (SC Sel 2, SC Sel 1 and SC Sel 3) showed high overall general combining ability status, suggesting these lines as good general combiners across traits. Eighteen hybrids had high overall specific combining ability status, while nearly 52% (22 hybrids), 57% (24 hybrids) and 47% (20 hybrids) of crosses showed high overall mid-parent, better-parent and standard heterosis. The unique superiority of crosses involving high overall general combiner parent in the crosses highlighted the importance of using such parents to realize high heterotic crosses. A non-linear relationship between high overall specific combining ability status and heterotic status of hybrids was noticed. The probability of obtaining a cross with high standard heterosis was more with employing parents with high general combining ability status.


Asunto(s)
Vigor Híbrido , Zea mays , Vigor Híbrido/genética , Zea mays/genética , Fenotipo , Verduras , Estaciones del Año
16.
Foods ; 12(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37959004

RESUMEN

Sweet corn is frequently consumed in the US and contains carbohydrates as major macronutrients. This study examined the effects of blanching, freezing, and canning on carbohydrates in sweet corn. Fresh bi-color sweet corn was picked in the field and processed immediately into frozen and canned samples. Simple sugars, starch, and dietary fiber (DF) (including total DF (TDF), insoluble DF (IDF) and two fractions of soluble DF (SDF)) were measured according to the AOAC methods. Additional glycomic analysis including oligosaccharides, monosaccharide composition of total polysaccharides (MCTP) and glycosidic linkage of total polysaccharides (GLTP) were analyzed using UHPLC-MS. Sucrose is the major simple sugar, and IDF is the main contributor to TDF. Sucrose and total simple sugar concentrations were not altered after blanching or freezing but were significantly reduced in canned samples. Kestose was the only oligosaccharide identified in sweet corn and decreased in all heat-treated or frozen samples. Starch content decreased in frozen samples but increased in canned samples. While two SDF fractions did not differ across all samples, blanching, freezing and canning resulted in increases in TDF and IDF. Six monosaccharides were identified as major building blocks of the total polysaccharides from MCTP analysis. Glucose and total monosaccharide concentrations increased in two canned samples. GLTP was also profoundly altered by different food processing methods. This study provided insights into the changes in the content and quality of carbohydrates in sweet corn after food processing. The data are important for accurate assessment of the carbohydrate intake from different sweet corn products.

17.
Plant Physiol Biochem ; 203: 108058, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37778115

RESUMEN

Traditional phosphorus fertilizers are necessary for plant growth but about 80-90% are lost into the surrounding environment via irrigation, therefore nano-fertilizers have been developed as slow-release fertilizers to achieve sustainable agriculture. This trial investigated the impact of the foliar application of hydroxyapatite nanoparticles (HA-NPs) as a source of nano-phosphorus (P-NPs) on two cultivars of sweet corn (yellow and white) throughout two seasons. The morphology and structure of the prepared HA-NPs were characterized via transmission electron microscopy (TEM) and X-ray diffractometry (XRD). In addition, agro-morphological criteria, chemical contents (i.e., photosynthetic pigments, phenols, indoles, minerals, etc.), and genomic template stability percentage (GTS%) were evaluated in the produced sweet corn. The application of 50 mg/l HA-NPs improved the growth characteristics, yield per hectare, leaf pigments, and chemical content of yellow sweet corn, whereas the application of 100 mg/l of HA-NPs to white sweet corn enhanced the vegetative characteristics, production, photosynthetic pigments, phenols, and indoles. The difference in results may be due to the presence of a +ve unique band with SCoT-4 and SCot-2 primers at 1250 and 470 bp in yellow and white corn treated with 50 and 100 mg/l, respectively. The minimum GTS% was recorded at a concentration of 75 mg/l for both white and yellow corn. The HA-NPs can be applied as a foliar source of P-NPs to achieve agricultural sustainability.


Asunto(s)
Fertilizantes , Nanopartículas , Zea mays , Fósforo/farmacología , Agricultura/métodos , Verduras , Inestabilidad Genómica , Indoles , Fenoles
18.
Plants (Basel) ; 12(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836246

RESUMEN

Zeaxanthin is a naturally occurring xanthophyll carotenoid obtained from diet sources. Particularly, sweet corn is a major source of dietary zeaxanthin. To investigate the genetic basis of zeaxanthin content regulation in sweet corn, a recombinant inbred line (RIL) population comprising 191 families was constructed using two inbred lines (K44 and F22) with contrasting zeaxanthin content in the grain. The zeaxanthin content in the dry grains of this population grown at different locations was determined using high performance liquid chromatography (HPLC). Subsequently, 175 polymorphic simple sequence repeat (SSR) markers were used to construct a linkage map with a total length of 4322.37 cM and with an average distance of 24.4 cM. A total of eight QTLs located on chromosomes 4, 5, 7, 9, and 10 were detected. The QTLs located in umc1632-umc1401 on chromosome 7 were detected in different environments and explained 11.28-20.25% of the phenotypic variation, implying it is the main QTL controlling zeaxanthin content in the dry grains of sweet corn. Collectively, the present study provides a genetic map and theoretical guidance for the cultivation of sweet corn varieties with a high zeaxanthin content.

19.
Plant Dis ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37877996

RESUMEN

Sweet corn (Zea mays L.) is widely consumed as fresh or frozen vegetable worldwide, and Zhengtian68 is a popular commercial variety cultivated extensively in southeast China. In May 2021, 40% of the inbred line YK063 (the female parent of Zhengtian68) showed early yellowing of the leaves at flowering time in a commercial seed production field with a total area of 0.5 ha in Guangzhou, Guangdong Province after a heavy rain. Black and rotten roots were observed in the diseased plants after digging the whole plant out of the soil. Grain filling was also severely affected, adversely impacting seed production. Diseased plants were more easily found in the lower section of the field, where water accumulated after rainfall. Three plants with rotten roots were collected randomly from the field to identify the causal pathogen. The diseased roots were cut into 2-3 mm sections, washed in 75% ethanol for 2 minutes and rinsed three times in sterile distilled water. Four to five sections per plant were placed on potato dextrose agar (PDA) and incubated at 28℃ in the dark for three days. Three isolates GF1, GF2, and GF3 from different plants were purified by hyphal tip isolation and transferred to new PDA and 10% V8 juice agar (16 g agar, 3 g CaCO3, 100 ml V8 juice, and 900 ml distilled water) and incubated at 28℃ for 10 days in darkness for further investigation. Translucent, glassy mycelial growth was observed on the PDA media. Morphological characteristics of the 3 isolates were observed under a microscope from the 10%V8 media. The hyphae were aseptate and 2.7 to 4.5 µm wide (mean±SD,3.3±0.44µm, n=44). Sporangia were inflated, or lobulate, terminal, or intercalary. Oogonia were globose, smooth-walled, terminal, or occasionally intercalary, with a diameter of 17.2-24.1 µm (mean±SD, 21.3±2.14µm, n=29). Oospores were globose, plerotic, smooth, and 14.5-21.2 µm (mean±SD, 18.7±2.07µm, n=35) in diameter. The antheridia were diclinous or monoclinous, not intercalary, and one to six antheridia were attached to each oogonium. Based on these morphological characteristics, 3 isolates were identified as Pythium spp. including Pythium graminicola (Van der Plaats-Niterink 1981). Genomic DNA was extracted from the mycelia grown on PDA using a Fungal Genomic DNA kit (Scintol, Beijing, China) according to the manufacturer's instructions. The cytochrome oxidase II (Cox II) gene and internal transcribed spacer (ITS) region of the rDNA were amplified using the primers FM58/FM66 (Martin 2000) and ITS4/ITS5 (White et al. 1990) respectively. Amplification was performed in a 50µl reaction volume using 25 µl PCR Mix (Trans Gene, Beijing, China), 3 µl genomic DNA (50 ng/µl), 1 µl each forward and reverse primer (10 µM), and 20 µl ddH2O. The PCR program was as follows: initial denaturation at 95°C for 30 s, 35 cycles of denaturation at 95°C for 30 s, annealing at 60°C for 60 s, extension at 72°C for 60 s, and a final extension at 72°C for 10 min. PCR products were sequenced and submitted to GenBank (accession no. OQ504322, OQ933130, and OQ933212 for ITS; OQ512002, OQ942203, and OQ942204 for Cox II). BLASTn analysis revealed that the ITS and Cox II sequences showed more than 98.62% similarity (721/724bp, 722/724bp,723/724bp for ITS; 514/514bp, 506/507bp, 500/507bp for Cox II) to P. graminicola ATCC96234 (accession no. AB095045 for ITS, and AB160849 for Cox II), respectively, supporting the morphological analysis. A neighbor-joining phylogenetic analysis of the ITS and Cox II concatenated sequence further confirmed that the isolates were P. graminicola. To test the pathogenicity of GF1, GF2, and GF3 a wheat seed inoculum was prepared as previously described (Qu et al. 2016). Sweet corn YK063 plants were planted in sterilized nutrient soil in plastic pots (one plant per pot) and grown in a greenhouse at 28℃ with 60% humidity and a 12-h/12-h light-dark cycle. For each isolate,10 plants were inoculated with 20 infected wheat seeds around the roots at the V5 stage, while 10 other YK063 plants were inoculated with the non-infected wheat seeds as a control. The experiment was repeated once. Three weeks later, the non-inoculated plants were asymptomatic. In contrast, inoculated plants showed stunning, yellowing of the leaves, root rot, and decreased production of lateral roots, exhibiting symptoms similar to those originally described for the disease. P. graminicola was successfully reisolated from the diseased roots and identified by morphological characteristics and sequencing of the ITS and Cox II as the causal agent for this root rot disease, fulfilling Koch's postulate for defining a causal agent. P. graminicola was reported as a causal agent of damping-off on dent corn in Georgia (Li et al. 2018). To our knowledge, this is the first report of P. graminicola causing root rot in sweet corn in southeast China. Identification of this pathogen will facilitate further research on this disease and the development of effective strategies to control the disease.

20.
Food Chem (Oxf) ; 7: 100179, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37583676

RESUMEN

Sweet corn is perishable and have limited harvest duration and shelf life due to their quality deterioration. Reactive oxygen species (ROS) are one of the most predominant factors for maintaining quality of sweet corn during and after harvest. Brassinosteroids (BRs) can enhance the activity of antioxidant enzymes and decrease the ROS level in plants. In this study, we found that a bioactive BR (24-epibrassinolide, EBR) treatment before harvest markedly inhibited change of quality indicators (MDA content, weight loss rate, and soluble sugar content) during and after harvest. Further analysis revealed that EBR promoted the activity and transcriptions of antioxidant enzymes, maintaining lower ROS level in kernels. Meanwhile, exogenous EBR increased the expression level of genes controlling sucrose transport in sweet corn kernels. Bioinformatics and binding analysis identified that BR transcription factor ZmBES1/ZmBZR1-10 might potentially bind to and upregulate transcriptions of antioxidant enzyme genes including SOD and POD genes, and sucrose transport-related genes including SUT and SWEET genes. These results indicated that exogenous application of EBR ameliorates quality during and after harvest by improving the antioxidant capacity and photosynthetic assimilates accumulation rate of sweet corn, thus prolonging harvest duration and shelf life in sweet corn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA