Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-825413

RESUMEN

@#Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder as a result of CF transmembrane conductance regulator gene mutation. It has a wide range of disease severity in patients with the same genotype. Case report: A 5-year-old Malay boy with a history of recurrent pneumonia, presented with productive cough, fever and worsening tachypnoea. Physical examination revealed coarse crepitations, reduced breath sounds and clubbing. Biochemical investigations showed that he had respiratory type 2 failure as a result of bronchiectasis. Sweat conductivity done twice was raised supporting a diagnosis of CF. Other investigations such as bronchoscopy to look for congenital anomaly of the lung, infectious disease screening and tuberculosis, fungal and viral culture and sensitivity were negative. Further cascade screening revealed high sweat conductivity results in his siblings. Discussion: Although CF prevalence is low in Malaysia, it is nevertheless an important diagnosis to be recognised as it is associated with increased morbidity.

2.
Small ; 14(45): e1802876, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30300469

RESUMEN

Sweat excretion is a dynamic physiological process that varies with body position, activity level, environmental factors, and health status. Conventional means for measuring the properties of sweat yield accurate results but their requirements for sampling and analytics do not allow for use in the field. Emerging wearable devices offer significant advantages over existing approaches, but each has significant drawbacks associated with bulk and weight, inability to quantify volumetric sweat rate and loss, robustness, and/or inadequate accuracy in biochemical analysis. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication to electronic devices with capabilities in near field communications (NFC), including most smartphones. The platform exploits ultrathin electrodes integrated within a collection of microchannels as interfaces to circuits that leverage NFC protocols. The resulting capabilities are complementary to those of previously reported colorimetric strategies. Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects exercising and at rest establish the key operational features and their utility in sweat analytics.


Asunto(s)
Electrónica/métodos , Microfluídica/métodos , Animales , Electrólitos/química , Humanos , Piel/química , Sudor/química
3.
Clin Chem Lab Med ; 56(4): 554-559, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28988220

RESUMEN

BACKGROUND: There are several complementary English-language guidelines for the performance of the sweat chloride test. These guidelines also incorporate information for the collection of conductivity samples. However, recommendations for the measurement and reporting of sweat conductivity are less clear than for sweat chloride. The aim of the study was to develop an understanding of the testing and reporting practices of sweat conductivity in Australasian laboratories. METHODS: A survey specifically directed at conductivity testing was sent to the 12 laboratories registered with the Royal College of Pathologists of Australasia Quality Assurance Programs. RESULTS: Nine (75%) laboratories participated in the survey, seven of whom used Wescor Macroduct® for collecting sweat and the Wescor SWEAT·CHEK™ for conductivity testing, and the remaining two used the Wescor Nanoduct®. There was considerable variation in frequency and staffing for this test. Likewise, criteria about which patients it was inappropriate to test, definitions of adequate collection sweat rate, cutoffs and actions recommended on the basis of the result showed variations between laboratories. CONCLUSIONS: Variations in sweat conductivity testing and reporting reflect many of the same issues that were revealed in sweat chloride test audits and have the potential to lead to uncertainty about the result and the proper action in response to the result. We recommend that sweat testing guidelines should include clearer statements about the use of sweat conductivity.


Asunto(s)
Cloruros/química , Técnicas de Laboratorio Clínico , Fibrosis Quística/diagnóstico , Conductividad Eléctrica , Sudor/química , Humanos , Control de Calidad , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA