Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 99(9): 4558-4565, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32868000

RESUMEN

Salmonella is one of the main foodborne pathogens that affect humans and farm animals. The Salmonella genus comprises a group of food-transmitted pathogens that cause highly prevalent foodborne diseases throughout the world. The aim of this study was to appraise the viability of Salmonella Typhimurium biofilm under water treatment at room temperature on different surfaces, specifically stainless steel (SS), plastic (PLA), rubber (RB), and eggshell (ES). After 35 D, the reduction of biofilm on SS, PLA, RB, and ES was 3.35, 3.57, 3.22, and 2.55 log CFU/coupon without water treatment and 4.31, 4.49, 3.50, and 1.49 log CFU/coupon with water treatment, respectively. The dR value (time required to reduce bacterial biofilm by 99% via Weibull modeling) of S. Typhimurium without and with water treatment was the lowest on PLA (176.86 and 112.17 h, respectively) and the highest on ES (485.37 and 2,436.52 h, respectively). The viability of the S. Typhimurium on ES and the 3 food-contact surfaces was monitored for 5 wk (35 D). The results of this study provide valuable information for the control of S. Typhimurium on different surfaces in the food industry, which could reduce the risk to consumers.


Asunto(s)
Biopelículas , Cáscara de Huevo , Microbiología de Alimentos , Viabilidad Microbiana , Salmonella typhimurium , Animales , Pollos , Recuento de Colonia Microbiana/veterinaria , Cáscara de Huevo/microbiología , Manipulación de Alimentos , Salmonella typhimurium/fisiología , Temperatura , Agua
2.
Reprod Domest Anim ; 54(3): 435-444, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30472784

RESUMEN

Ambient temperature during early stages of life has a substantial effect on physiological processes, eliciting phenotypic plasticity during zebrafish developmental stages. Zebrafish are known to possess a noteworthy ability to modify their phenotype in dependence of environmental factors. However, there is a poor understanding of the effects of temperature during embryogenesis, which influences the biological functions such as survival ability and masculinization in later developmental stages. Since the middle embryonic phase (pharyngula period) is genetically the most conserved stage in embryogenesis, it is very susceptible to embryonic lethality in developmental processes of vertebrates. Here, we tested the effect of transient perturbations (heat shock) during early development (5-24 hr post-fertilization; hpf) at 35°C compared to control group at 28°C, on survival ability of zebrafish to study the embryonic and post-embryonic mortality. We studied the variation of heat-induced masculinization among and across the families in response to high temperature. Furthermore, morphometric traits of adult zebrafish at different developmental time points were measured in order to estimate the temperature × sex interaction effect. We found the highest embryonic mortality around the gastrula and segmentation periods in both experimental groups, with significantly lower survival ability in the temperature-treated group (73.30% ± 0.58% vs. 70.19% ± 0.57%, respectively). A higher hatching success was observed in the control group (71.08% ± 0.61%) compared to the heat-induced group (67.95% ± 0.60%). A distinct reduction in survival ability was also observed in both experimental groups during the first two weeks after hatching, followed by a reduced level of changes thereafter. We found sex ratio imbalances across all families, with 25.2% more males under temperature treatment. Our study on growth performance has shown a positive effect of increased temperature on growth plasticity, with a greater impact on female fish in response to high ambient temperature.


Asunto(s)
Adaptación Fisiológica , Embrión no Mamífero/embriología , Pez Cebra/embriología , Animales , Desarrollo Embrionario , Femenino , Masculino , Análisis para Determinación del Sexo/veterinaria , Análisis de Supervivencia , Temperatura , Pez Cebra/crecimiento & desarrollo
3.
Microbiologyopen ; 8(6): e00767, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30444301

RESUMEN

In recent years, Bacillus spp. have garnered attention as probiotic supplements in aquafeed owing to the production of heat stable and low pH resistant spores. Herein, we isolated and characterized an autochthonous Bacillus licheniformis KCCM 43270 from the intestine of olive flounder (Paralichthys olivaceus) for supplementation in low-fishmeal extruded aquafeeds. The KCCM 43270 was screened based on amylase, protease, cellulase, and lipase as well as non-hemolytic activities. The isolate was able to grow in carboxymethyl cellulose (CMC), xylan, and soybean meal (SBM) when used as a single carbon source in the minimal nutrient M9 medium. The KCCM 43270 spores displayed complete survival in acid (pH 2.5) and bile (0.3%, w/v) for 3 hr, strong biofilm formation, and nearly 50% adhesion with intestinal mucus. The spores of the isolate also showed significant survival ability at 80, 90, 100°C for 60, 30, and 1 min, respectively. In addition, the spores in a blend of SBM complex carrier showed significant heat stability at 120°C for 5 min and under different drying conditions. Furthermore, the spores also survived the extrusion process during low-fishmeal aquafeed manufacturing, implying the potential application of B. licheniformis KCCM 43270 in aquafeed industry.


Asunto(s)
Alimentación Animal/microbiología , Bacillus licheniformis/fisiología , Peces Planos/microbiología , Probióticos/química , Alimentación Animal/análisis , Animales , Acuicultura , Bacillus licheniformis/química , Bacillus licheniformis/crecimiento & desarrollo , Biopelículas , Peces Planos/crecimiento & desarrollo , Aditivos Alimentarios/química , Calor , Esporas Bacterianas/química , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/fisiología
4.
Front Microbiol ; 8: 1524, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848531

RESUMEN

Streptococcus suis serotype 2 (SS2) is an important zoonotic agent in swine and humans. Anti-phagocytosis and survival in phagocytic cells and whole blood is essential for bacteria to be pathogenic. In this study, the host specificity determinant specificity subunit (coded by hsdS) of the Type I Restriction-Modification system and two peptidoglycan-binding proteins (coded by lysM and lysM', respectively), which were simultaneously found to be subjected to transcript-level influence by hsdS, were identified to facilitate the anti-phagocytosis of SS2 to a microglia cell line BV2. Furthermore, they significantly enhanced its survival in BV2, whole blood, and a peroxidation environment (H2O2) (p < 0.05), yet not in the acidic condition based on statistical analysis of the characteristic differences between gene mutants and wild-type SS2. In contrast, another specificity subunit, coded by hsdS', that belonged to the same Type I Restriction-Modification system, only significantly reduced the survival ability of SS2 in the acidic condition when in the form of a gene-deleted mutant (p < 0.05), but it did not significantly influence the survival ability in other conditions mentioned above or have enhanced anti-phagocytosis action when compared with wild-type SS2. In addition, the mutation of hsdS significantly enhanced the secretion of nitric oxide and TNF-α by BV2 with SS2 incubation (p < 0.05). The SS2 was tested, and it failed to stimulate BV2 to produce IFN-γ. These results demonstrated that hsdS contributed to bacterial anti-phagocytosis and survival in adverse host environments through positively impacting the transcription of two peptidoglycan-binding protein genes, enhancing resistance to reactive oxygen species, and reducing the secretion of TNF-α and nitric oxide by phagocytes. These findings revealed new mechanisms of SS2 pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA