Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005599

RESUMEN

Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion. To verify the method, we combined two DL-based schemes, such as (i) the 3D Convolutional AutoEncoder (3D-AE) for anomaly detection and (ii) the SlowFast neural network for anomaly classification. The 3D-AE can detect occurrence points of abnormal events and generate regions of interest (ROI) by the points. The SlowFast model can classify abnormal events using the ROI. These multi-modal approaches can complement weaknesses and leverage strengths in the existing security system. To enhance anomaly learning effectiveness, we also attempted to create a new dataset using the virtual environment in Grand Theft Auto 5 (GTA5). The dataset consists of 400 abnormal-state data and 78 normal-state data with clip sizes in the 8-20 s range. Virtual data collection can also supplement the original dataset, as replicating abnormal states in the real world is challenging. Consequently, the proposed method can achieve a classification accuracy of 85%, which is higher compared to the 77.5% accuracy achieved when only employing the single classification model. Furthermore, we validated the trained model with the GTA dataset by using a real-world assault class dataset, consisting of 1300 instances that we reproduced. As a result, 1100 data as the assault were classified and achieved 83.5% accuracy. This also shows that the proposed method can provide high performance in real-world environments.

2.
Front Robot AI ; 10: 1089062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122582

RESUMEN

Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA