Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066057

RESUMEN

After injection molding, plastic gears often exhibit surface defects, including those on end faces and tooth surfaces. These defects encompass a wide range of types and possess complex characteristics, which pose challenges for inspection. Current visual inspection systems for plastic gears suffer from limitations such as single-category defect inspection and low accuracy. There is an urgent industry need for a comprehensive and accurate method and system for inspecting defects on plastic gears, with improved inspection capability and higher accuracy. This paper presents an intelligent inspection algorithm network for plastic gear defects (PGD-net), which effectively captures subtle defect features at arbitrary locations on the surface compared to other models. An adaptive sample weighting method is proposed and integrated into an improved Focal-IoU loss function to address the issue of low inspection accuracy caused by imbalanced defect dataset distributions, thus enhancing the regression accuracy for difficult defect categories. CoordConv layers are incorporated into each inspection head to improve the model's generalization capability. Furthermore, a dataset of plastic gear surface defects comprising 16 types of defects is constructed, and our algorithm is trained and tested on this dataset. The PGD-net achieves a comprehensive mean average precision (mAP) value of 95.6% for the 16 defect types. Additionally, an online inspection system is developed based on the PGD-net algorithm, which can be integrated with plastic gear production lines to achieve online full inspection and automatic sorting of plastic gear defects. The entire system has been successfully applied in plastic gear production lines, conducting daily inspections of over 60,000 gears.

2.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244764

RESUMEN

The advent of convolutional neural networks (CNNs) has accelerated the progress of computer vision from many aspects. However, the majority of the existing CNNs heavily rely on expensive GPUs (graphics processing units). to support large computations. Therefore, CNNs have not been widely used to inspect surface defects in the manufacturing field yet. In this paper, we develop a compact CNN-based model that not only achieves high performance on tiny defect inspection but can be run on low-frequency CPUs (central processing units). Our model consists of a light-weight (LW) bottleneck and a decoder. By a pyramid of lightweight kernels, the LW bottleneck provides rich features with less computational cost. The decoder is also built in a lightweight way, which consists of an atrous spatial pyramid pooling (ASPP) and depthwise separable convolution layers. These lightweight designs reduce the redundant weights and computation greatly. We train our models on groups of surface datasets. The model can successfully classify/segment surface defects with an Intel i3-4010U CPU within 30 ms. Our model obtains similar accuracy with MobileNetV2 while only has less than its 1/3 FLOPs (floating-point operations per second) and 1/8 weights. Our experiments indicate CNNs can be compact and hardware-friendly for future applications in the automated surface inspection (ASI).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA