Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Intervalo de año de publicación
1.
Appl Radiat Isot ; 213: 111493, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226627

RESUMEN

Polyvinyl alcohol (PVA) is a beneficial polymer capable of forming hydrogels helpful in a wide range of applications. Hydrogels based on cross-linking of PVA with borax, and able to incorporate with a decontaminating agent have been used in the decontamination of 99Mo from contaminated surfaces. Aluminum hydroxide has been introduced in the formulations of PVA-borax, to increase the gel efficiency for 99Mo decontamination from surfaces. The formulations were investigated with glass, stainless steel, and wood as examples of different surfaces. When the hydrogel is sprayed on different surfaces, it forms rapidly and adheres well. Moreover, the hydrogel was shown to efficiently decontaminate surfaces contaminated with 99Mo by a maximum value of decontamination factor (D.F) for glass, stainless steel, and wood to be 43.5, 31.3, and 19.6 respectively.

2.
Odovtos (En línea) ; 26(1): 76-85, Jan.-Apr. 2024. tab, graf
Artículo en Inglés | LILACS, SaludCR | ID: biblio-1558620

RESUMEN

Abstract The purpose of this study was to examine the effect of different decontamination agents on the bond strength of saliva-contaminated CAD/CAM blocks and repair composite materials. Two hunderd eighty 3-mm-thick specimens were prepared from four different CAD/CAM materials: Katana Zirconia UTML disc, IPS e.max CAD block, Shofu block, and Vita Enamic block. Each material was divided into seven different subgroups (N=70). Group 1 had a clean surface. The other groups were comprised of the samples, which were contaminated with human saliva: group 2: negative control (non-cleaned); group 3: cleaned with water spray; group 4: cleaned with 70% ethanol; group 5: cleaned with Ivoclean; group 6: cleaned with Katana Cleaner; and group 7: cleaned with phosphoric acid. After the decontamination protocols, the resin composite cylinders were bonded to the CAD/CAM surfaces with a thin layer of dual-cured resin cement. The samples were stored for 24 hours at 37°C in distilled water. Then, they were subjected to a shear bond strength test (SBS). The values were recorded, and fracture types were evaluated using a microscope. Data were analyzed using two-way ANOVA and Tukey's post-hoc test. Generally, all decontaminating agents improved the SBS of composites to Katana Zirconia UTML, IPS e.max, and Vita Enamic materials (p<0.05). However, for Shofu materials, group 6 samples exhibited significantly higher bond strength values as compared with group 2 samples (p=0.026). The highest SBS values were seen in the phosphoric acid-treated group in Katana zirconia materials (26.45 ± 9.38 MPa), whereas the lowest values were seen in group 2 samples in Shofu materials (13.17±3.40 MPa). Each decontaminant agent improved the bond strength of composites to the contaminated CAD/CAM materials. If saliva is not cleaned before adhesive procedure, SBS values may decrease. All decontamination agents can be used safely on zirconia, lithium-disilicate glass-ceramic, hybrid ceramic, and polymer-infiltrated ceramic surfaces.


Resumen El propósito de este estudio fue examinar el efecto de diferentes agentes descontaminantes sobre la fuerza de unión de bloques CAD/CAM contaminados con saliva y materiales compuestos de reparación. Se prepararon doscientas ochenta muestras de 3 mm de espesor a partir de cuatro materiales CAD/CAM diferentes: disco Katana Zirconia UTML, bloque IPS e.max CAD, bloque Shofu y bloque Vita Enamic. Cada material se dividió en siete subgrupos diferentes (N=70). El grupo 1 tenía una superficie limpia. Los otros grupos estaban compuestos por muestras que estaban contaminadas con saliva humana: grupo 2: control negativo (no limpio); grupo 3: limpiado con agua pulverizada; grupo 4: limpiado con etanol al 70%; grupo 5: limpiado con Ivoclean; grupo 6: limpiado con Katana Cleaner; y grupo 7: limpiado con ácido fosfórico. Después de los protocolos de descontaminación, los cilindros de composite de resina se adhirieron a las superficies CAD/CAM con una fina capa de cemento de resina de curado dual. Las muestras se almacenaron durante 24 horas a 37°C en agua destilada. Luego, fueron sometidos a una prueba de resistencia al corte (SBS). Se registraron los valores y se evaluaron los tipos de fracturas utilizando un microscopio. Los datos se analizaron mediante ANOVA de dos factores y la prueba post-hoc de Tukey. En general, todos los agentes descontaminantes mejoraron el SBS de los composites con los materiales Katana Zirconia UTML, IPS e.max y Vita Enamic (p<0,05). Sin embargo, para los materiales Shofu, las muestras del grupo 6 exhibieron valores de fuerza de unión significativamente más altos en comparación con las muestras del grupo 2 (p=0,026). Los valores más altos de SBS se observaron en el grupo tratado con ácido fosfórico en materiales de circonio Katana (26,45 ± 9,38 MPa), mientras que los valores más bajos se observaron en las muestras del grupo 2 en materiales Shofu (13,17 ± 3,40 MPa). Cada agente descontaminante mejoró la fuerza de unión de los composites a los materiales CAD/CAM contaminados. Si no se limpia la saliva antes del procedimiento adhesivo, los valores de SBS pueden disminuir. Todos los agentes descontaminantes se pueden utilizar de forma segura en superficies de circonio, cerámica de vidrio de disilicato de litio, cerámica híbrida y cerámica con infiltraciones de polímeros.


Asunto(s)
Descontaminación/métodos , Diseño Asistido por Computadora , Resistencia al Corte , Limpiadores de Dentadura
3.
Microorganisms ; 12(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38399770

RESUMEN

The bacterial adhesion to food processing surfaces is a threat to human health, as these surfaces can serve as reservoirs of pathogenic bacteria. Escherichia coli is an easily biofilm-forming bacterium involved in surface contamination that can lead to the cross-contamination of food. Despite the application of disinfection protocols, contamination through food processing surfaces continues to occur. Hence, new, effective, and sustainable alternative approaches are needed. Bacteriophages (or simply phages), viruses that only infect bacteria, have proven to be effective in reducing biofilms. Here, phage phT4A was applied to prevent and reduce E. coli biofilm on plastic and stainless steel surfaces at 25 °C. The biofilm formation capacity of phage-resistant and sensitive bacteria, after treatment, was also evaluated. The inactivation effectiveness of phage phT4A was surface-dependent, showing higher inactivation on plastic surfaces. Maximum reductions in E. coli biofilm of 5.5 and 4.0 log colony-forming units (CFU)/cm2 after 6 h of incubation on plastic and stainless steel, respectively, were observed. In the prevention assays, phage prevented biofilm formation in 3.2 log CFU/cm2 after 12 h. Although the emergence of phage-resistant bacteria has been observed during phage treatment, phage-resistant bacteria had a lower biofilm formation capacity compared to phage-sensitive bacteria. Overall, the results suggest that phages may have applicability as surface disinfectants against pathogenic bacteria, but further studies are needed to validate these findings using phT4A under different environmental conditions and on different materials.

4.
Chemosphere ; 339: 139617, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495045

RESUMEN

Wide-area surface decontamination is essential during the sudden release of radioisotopes to the public, such as nuclear accidents or terrorist attacks. A self-generated hydrogel comprising a reversible complex between poly(vinyl alcohol) (PVA) and phenylboronic acid-grafted poly(methyl vinyl ether-alt-mono-sodium maleate) (PBA-g-PMVE-SM) was developed as a new surface decontamination coating agent to remove radioactive cesium from surfaces. The simultaneous application of PVA and PBA-g-PMVE-SM aqueous polymer solutions containing sulfur-zeolite to contaminated surfaces resulted in the spontaneous formation of a PBA-diol ester bond-based hydrogel. The sulfur-zeolite suspended in the hydrogel selectively removed 137Cs from the contaminated surface and was easily separated from the dissociable used hydrogel. This removal was performed by simple water rinsing without costly incineration to remove the organic materials for final disposal/storage of the radioactive waste, making it suitable for practical wide-area surface decontamination. In radioactive tests, the hydrogel containing sulfur-chabazite (S-CHA) showed substantial 137Cs removal efficiencies of 96.996% for painted cement and 63.404% for cement, which are 2.33 times better than the values for the commercial surface decontamination coating agent DeconGel. Due to its excellent zeolite ion-exchange ability, our hydrogel system has great potential for removing various hazardous contaminants, including radionuclides, from the surface.


Asunto(s)
Hidrogeles , Zeolitas , Alcohol Polivinílico , Descontaminación , Radioisótopos de Cesio/análisis , Cesio , Agua , Maleatos
5.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(3): 350-355, 2023 Jun 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37277802

RESUMEN

OBJECTIVES: To investigate the effect of oral microscope-assisted surface decontamination on implants in vitro. METHODS: Twelve implants that fell off because of severe peri-implantitis were collected, and decontamination was carried out on the surfaces of implants through curetting, ultrasound, titanium brushing, and sandblasting at 1×, 8×, or 12.8× magnifications. The number and sizes of residues on the implants' surfaces after decontamination were determined, and the decontamination effect was analyzed according to the thread spacing in the different parts of the thread. RESULTS: 1) The 8× and 12.8× groups scored lower for implant surface residues than the 1× group (P<0.000 1), and the 12.8× group scored lower than the 8× group (P<0.001); 2) no difference in residue score was found between the wide and narrow thread pitch (P>0.05), and the 8× and 12.8× groups had lower scores than the 1× group (P<0.001); 3) the lowest number of contaminants was observed at the tip of the thread, whereas the highest was observed below the thread, and the difference was significant (P<0.001). However, the thread pitch had no effect on the number of contaminants in different areas (P>0.05); 4) the residue scores of the 8× and 12.8× groups were lower than those of the 1× group at the thread tip and above, sag, and below the thread of the implants (P<0.05). CONCLUSIONS: Residues on the surfaces of contaminated implants can be effectively removed by using an oral microscope. After decontamination, the residues of pollutants were mainly concentrated below the thread of the implants, and the thread pitch of the implants had no significant effect on the residues.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Descontaminación , Propiedades de Superficie , Titanio
6.
J Clin Periodontol ; 50(8): 1113-1122, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271864

RESUMEN

AIM: The present study aimed at evaluating the effect of air-polishing (AP) and a combination of AP and alkaline electrolysed water (AEW) in surface decontamination of explanted peri-implantitis-affected implants. MATERIALS AND METHODS: Twenty-five patients with 34 dental implants scheduled for explantation due to severe peri-implantitis were included. Following implant removal, the apical part of each implant was embedded in acrylic blocks. Implants were randomly allocated to surface decontamination using AP with or without AEW. Four implants were left untreated and used as negative controls. Specimens were analysed using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Area of residual bacteria was the primary outcome. RESULTS: SEM analysis revealed that both treatment protocols were effective in biofilm removal and only small proportions of target areas of the implants showed residual bacterial or mineralized deposits. Although differences between the treatment protocols were small, implant thread loci (top/flank/valley), zones of the implant (apical/middle/coronal), implant surface characteristics and gender influenced the results. In addition, EDS analysis showed that zones influenced the atomic% of carbon and calcium and that implant surface characteristics affected the atomic% of titanium. CONCLUSIONS: AP, with or without AEW, is an effective method in removing biofilm from peri-implantitis-affected implants.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Descontaminación , Periimplantitis/cirugía , Propiedades de Superficie , Titanio
7.
Clin Implant Dent Relat Res ; 25(4): 696-709, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37199027

RESUMEN

INTRODUCTION: Analysis of the 3-dimensional implant position, the bone defect morphology, and the soft tissue situation guides the decision to preserve or to remove an implant with a severe peri-implantitis lesion. The aim of this narrative review was to analyze and to comprehensively illustrate the treatment options focusing on peri-implant bone regeneration in presence of severe peri-implant bone loss. METHODS: A database search was performed independently by the two reviewers to identify case reports, case series, cohort, retrospective, and prospective studies about peri-implant bone regeneration with a follow-up of at least 6 months. Of the 344 studies issued during the database analysis, 96 publications were selected by the authors for this review. RESULTS: Deproteinized bovine bone mineral remains the best documented material for defect regeneration in peri-implantitis in combination with or without a barrier membrane. While studies using autogenous bone in peri-implantitis therapy are rarely found, they do report favorable potential of vertical bone regeneration. Moreover, while membranes are an inherent part of the guided bone regeneration, a 5-year follow-up study demonstrated clinical and radiographic improvements with and without a membrane. The administration of systemic antibiotics is frequently performed in clinical studies observing regenerative surgical peri-implantitis therapy, but the analysis of the literature does not support a positive effect of this medication. Most studies for regenerative peri-implantitis surgery recommend the removal of the prosthetic rehabilitation and the use a marginal incision with a full-thickness access flap elevation. This allows for a good overview for regenerative procedures with a certain risk of wound dehiscences and incomplete regeneration. An alternative approach referring to the poncho technique may reduce the risk of dehiscence. The effectiveness of implant surface decontamination might have an impact on peri-implant bone regeneration without any clinical superiority of a certain technique. CONCLUSION: The available literature reveals that the success of peri-implantitis therapy is limited to the reduction of bleeding on probing, the improvement of the peri-implant probing depth and a small amount of vertical defect fill. On this basis, no specific recommendations for bone regeneration in surgical peri-implantitis therapy can be made. Innovative approaches for flap design, surface decontamination, bone defect grafting material, and soft tissue augmentation should be followed closely to find advanced techniques for favorable peri-implant bone augmentation.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Animales , Bovinos , Periimplantitis/cirugía , Estudios de Seguimiento , Estudios Prospectivos , Estudios Retrospectivos , Regeneración Ósea
8.
Appl Radiat Isot ; 197: 110834, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37130468

RESUMEN

Synthesis and characterization of strippable polymeric-gel solution based on a water-soluble polymer (PVA), plasticizing agent (glycerol), and chelating agent (8-Hydroxyquinoline) for the surface decontamination from 137Cs and 60Co was carried out. Decontamination of glass and PVC surfaces was investigated in the present study, as a function of various chelating agents, gel-layer thickness, and radioactivity level. The decontamination efficiency was up to 95% for both radionuclides after 24 h of contact time with the contaminated surface. The obtained results suggest that the decontamination process of 137Cs and 60Co by polymer gel is possible combined by two mechanisms: chemically and physically.

9.
Int J Implant Dent ; 9(1): 3, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36739596

RESUMEN

PURPOSE: This retrospective cohort study evaluates the regeneration of severe peri-implantitis deficiencies treated with the laser-assisted peri-implant defect regeneration (LAPIDER) approach within a 3-year follow-up. METHODS: Twenty-four implants with severe peri-implantitis in 18 patients were treated according to the LAPIDER technique. In contrast to classic techniques for reconstructive peri-implantitis surgery with a marginal incision, a buccal split-flap preparation avoiding papillae separation was used. After a coronal flap elevation and a laser-assisted peri-implant defect cleaning, connective tissue and autogenous bone grafting was performed. Primary outcomes were the changes of the marginal bone levels (MBL) and the buccal bone thickness. Secondary outcomes included implant survival, peri-implant probing depths (PPD), bleeding on probing (BOP), recession, width of keratinized mucosa (KMW), thickness of keratinized mucosa (KMT), soft tissue esthetics (PES), and implant success. RESULTS: MBL improved interproximal by 3.10 ± 2.02 mm (p < 0.001), buccal by 3.49 ± 2.89 mm (p < 0.001), and lingual by 1.46 ± 1.98 mm (p = 0.003); buccal bone thickness by 0.55 ± 0.60 mm (p = 0.005), and 1.01 ± 1.25 mm (p = 0.001) at 1 and 3 mm below reference level. Two implants were removed; 22 implants were still in function at a mean follow-up of 36 months. PPD changed from 5.05 ± 1.39 to 3.08 ± 0.71 mm (p < 0.001); recession was reduced from 2.07 ± 1.70 to 0.91 ± 1.13 mm (p = 0.001); KMW increased from 2.91 ± 1.81 to 4.18 ± 1.67 mm (p = 0.006); KMT improved from 1.73 ± 0.50 to 2.44 ± 0.43 mm (p < 0.001); PES changed from 7.7 ± 2.8 to 10.7 ± 1.9 (p < 0.001). 45.8% to 54.2% of the implants met the criteria of implant success. CONCLUSIONS: The favorable results document the proof of principle for the regeneration of severe peri-implant hard and soft tissue deficiencies by the LAPIDER treatment approach.


Asunto(s)
Implantes Dentales , Periimplantitis , Procedimientos de Cirugía Plástica , Humanos , Periimplantitis/cirugía , Estudios Retrospectivos , Estética Dental
10.
Clin Oral Implants Res ; 34(4): 378-392, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36789504

RESUMEN

OBJECTIVES: The aim of the present study was to evaluate the efficacy of a supportive peri-implant care (SPIC) protocol after surgical therapy of peri-implantitis, combining ultrasonic mechanical debridement and glycine powder air polishing. MATERIALS AND METHODS: Thirty subjects diagnosed with peri-implantitis and treated by means of access flap were randomized 6 months later into two different SPIC groups: the test group combined a piezoelectric ultrasonic instrumentation with a specific implant PEEK tip and glycine powder air polishing, while control group received the same ultrasonic instrumentation together with a rubber cup and a polishing paste. Patients were followed for 12 months, with intermediate SPIC visits every 3 months. Clinical, radiological, microbiological and biochemical outcome variables were registered and calculated. RESULTS: After 12 months of SPIC, probing depths (PD) showed a mean reduction of 0.33 ± 0.11 mm, with significant differences (p < .001) between the test (-0.84 ± 0.43 mm) and the control group (+0.18 ± 0.73 mm). Healthy peri-implant tissues defined by PD <5 mm, absence of BoP (or in only one site around the implant), and no additional bone loss (<0.5 mm), were observed at the final visit in 83% of the implants (87% in the test group and 80% in the control group, p = .255). No adverse events were reported by the subjects participating in the study. CONCLUSIONS: The SPIC protocol including mechanical ultrasonic debridement and glycine powder air-polishing demonstrated significantly better efficacy in terms of PD reductions. A strict SPIC protocol can maintain for 1 year, or even improve, the results obtained after surgical treatment of peri-implantitis.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Periimplantitis/cirugía , Periimplantitis/tratamiento farmacológico , Polvos/uso terapéutico , Glicina , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
J Indian Prosthodont Soc ; 23(1): 12-20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36588370

RESUMEN

Aims: The intraoral microbiota has a high potential to undergo dysbiosis, causing inflammatory changes with respect to the tissues surrounding either a natural tooth or an implant. Thus, the longevity of implant prosthesis depends on a thorough implant decontamination protocol. Among all the techniques available for doing so, laser is garnering increasing popularity, owing to minimal bleeding, high efficiency, and faster healing. However, limited literature exists regarding the superiority of lasers over chlorhexidine (CHX), the indisputable gold standard antibacterial chemical agent. The aim of this study was to compare the percentage of bacterial reduction of Aggregatibacter actinomycetemcomitans from implant healing abutments post red diode laser therapy versus 0.2% CHX treatment. Settings and Design: The current study had an ex vivo, observational, case-control design. Materials and Methods: Patients reporting for the second stage of the implant surgery were taken as the source of data and the healing abutments, the clinical samples. Eleven patients were chosen with one intraoral implant serving as the test site for laser treatment and another, the control site for CHX treatment. Microbiological analysis was performed via quantitative real time polymerase chain reaction to compare the bacterial reduction percentage after each treatment. Statistical Analysis Used: Repeated measures ANOVA and independent sample t test were used. Results: The mean bacterial viability of the test group (laser) was 1.2%-1.6%, and 0.6%-1.4% for the control group (CHX). The former caused a mean bacterial reduction of 96.1% while the latter, 96.3%. Both the treatments caused a highly statistically significant reduction of viable bacterial counts (P = 0.001). However, when compared, there was no statistically significant difference in the bacterial reduction, when compared in between the two (P = 0.902). Conclusion: Laser treatment is at par with chemical implant surface decontamination. It can help bypass the complications of CHX and revolutionize the protocols for implant surface decontamination.


Asunto(s)
Implantes Dentales , Terapia por Láser , Humanos , Clorhexidina/farmacología , Clorhexidina/uso terapéutico , Aggregatibacter actinomycetemcomitans , Implantes Dentales/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Láseres de Semiconductores/uso terapéutico
12.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-981133

RESUMEN

OBJECTIVES@#To investigate the effect of oral microscope-assisted surface decontamination on implants in vitro.@*METHODS@#Twelve implants that fell off because of severe peri-implantitis were collected, and decontamination was carried out on the surfaces of implants through curetting, ultrasound, titanium brushing, and sandblasting at 1×, 8×, or 12.8× magnifications. The number and sizes of residues on the implants' surfaces after decontamination were determined, and the decontamination effect was analyzed according to the thread spacing in the different parts of the thread.@*RESULTS@#1) The 8× and 12.8× groups scored lower for implant surface residues than the 1× group (P<0.000 1), and the 12.8× group scored lower than the 8× group (P<0.001); 2) no difference in residue score was found between the wide and narrow thread pitch (P>0.05), and the 8× and 12.8× groups had lower scores than the 1× group (P<0.001); 3) the lowest number of contaminants was observed at the tip of the thread, whereas the highest was observed below the thread, and the difference was significant (P<0.001). However, the thread pitch had no effect on the number of contaminants in different areas (P>0.05); 4) the residue scores of the 8× and 12.8× groups were lower than those of the 1× group at the thread tip and above, sag, and below the thread of the implants (P<0.05).@*CONCLUSIONS@#Residues on the surfaces of contaminated implants can be effectively removed by using an oral microscope. After decontamination, the residues of pollutants were mainly concentrated below the thread of the implants, and the thread pitch of the implants had no significant effect on the residues.


Asunto(s)
Humanos , Implantes Dentales , Descontaminación , Propiedades de Superficie , Periimplantitis , Titanio
13.
Indoor Air ; 32(11): e13161, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36437677

RESUMEN

Hospital-acquired infections (HAIs) are a global challenge incurring mortalities and high treatment costs. The environment plays an important role in transmission due to contaminated air and surfaces. This includes microorganisms' deposition from the air onto surfaces. Quantifying the deposition rate of microorganisms enables understanding surface contamination and can inform strategies to mitigate the infection risk. We developed and validated a novel Automated Multiplate Passive Air Sampling (AMPAS) device. This enables sequences of passive deposition samples to be collected over a controlled time period without human intervention. AMPAS was used with air sampling to measure the effect of ventilation rate and spatial location on the deposition rate of aerosolized Staphylococcus aureus in a 32 m3 chamber. Increasing the ventilation rate from 3 to 6 ACH results in a reduction of microbial load in the air and on surfaces by 45% ± 10% and 44% ± 32%, respectively. The deposition rate onto internal surfaces λd was calculated as 1.38 ± 0.48 h-1 . Samples of airborne and surface microorganisms taken closer to the ventilation supply showed a lower concentration than close to the extract. The findings support the importance of controlling the ventilation and the environmental parameters to mitigate both air and surface infection risks in the hospital environment.


Asunto(s)
Contaminación del Aire Interior , Infección Hospitalaria , Humanos , Contaminación del Aire Interior/análisis , Ventilación , Staphylococcus aureus , Hospitales
14.
J Clin Med ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012939

RESUMEN

Background: The aim of this study, a prospective case series, was to evaluate the clinical, microbiological, and biochemical impact of the surgical treatment of peri-implantitis. Methods: Thirty subjects with diagnosis of peri-implantitis were treated following a surgical protocol including access flaps, surface decontamination with ultrasonics and glycine powder air-polishing, and systemic antibiotics. Disease resolution was defined by the composite outcome including presence of probing depths (PD) ≤5 mm, absence of bleeding on probing (BoP)/suppuration, and no additional radiographic bone loss (>1 mm). Regression analysis was used to evaluate the patient-, implant-, and prosthetic-related factors possibly influencing treatment outcomes. Results: Patients were evaluated at 6 months post treatment, demonstrating statistically significant reductions in PD (2.14 ± 1.07 mm) and increase in mucosal recession (1.0 ± 0.77 mm). Plaque, BoP, and suppuration were also reduced by 40.56%, 62.22%, and 7.78%, respectively. Disease resolution was achieved in 56.67% of patients. No significant changes were detected in microbiological parameters except for a significant reduction in proportions of Parvimonas micra. Similarly, the levels of the biomarker interleukin-8 in crevicular fluid were significantly lower at 6 months. Conclusions: The proposed surgical treatment of peri-implantitis demonstrated statistically significant clinical improvements although the impact on microbiological and biochemical parameters was scarce.

15.
Animals (Basel) ; 12(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35883369

RESUMEN

Given the increased deployment of working dogs to settings with pathogenic biological agents, a safe, effective, and logistically feasible surface decontamination protocol is essential to protect both the animals and their human handlers. Our group previously found that superficial contamination on surfaces relevant to the working dog community, including leashes and toys, could be significantly reduced using a standardized wiping protocol with various cleansing products. To expand upon this work, we analyzed the ability of this protocol to decontaminate surface-deposited bovine coronavirus, which was used as a BSL2 surrogate for SARS-CoV-2. Unsurprisingly, the physical characteristics of a given surface, including porosity and texture, had a significant effect on the ability to recover viable virus remaining on the surface post treatment. After correcting for these differences, however, wiping with 70% isopropyl alcohol (IPA) and 0.5% chlorhexidine performed best, reducing viral titers by >3 log on plastic bumper toys and nylon collars, and by >2 log on rubber toys and tennis balls. Leather leashes and Velcro proved more difficult to decontaminate, but both still showed significant loss of viral contamination following wiping with IPA or chlorhexidine. This work (i) validates the utility of a simple protocol for the neutralization of viruses on several surfaces, (ii) identifies materials that are more difficult to decontaminate, which should, thus, be considered for removal from field use, and (iii) highlights the need for further development of protocols testing porous or textured surfaces.

16.
J Hazard Mater ; 429: 128369, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236039

RESUMEN

To properly manage nuclear wastes is critical to sustainable utilization of nuclear power and environment health. Here, we show an innovative carbiding strategy for sustainable management of radioactive graphite through digestion of carbon in H2O2. The combined action of intermolecular oxidation of graphite by MoO3 and molybdenum carbiding demonstrates success in gasifying graphite and sequestrating uranium for a simulated uranium-contaminated graphite waste. The carbiding process plays a triple role: (1) converting graphite into atomic carbon digestible in H2O2, (2) generating oxalic ligands in the presence of H2O2 to favor U-precipitation, and (3) delivering oxalic ligands to coordinate to MoVI-oxo anionic species to improve sample batching capacity. We demonstrate > 99% of uranium to be sequestrated for the simulated waste with graphite matrix completely gasifying while no detectable U-migration occurred during operation. This method has further been extended to removal of surface carbon layers for graphite monolith and thus can be used to decontaminate monolithic graphite waste with emission of a minimal amount of secondary waste. We believe this work not only provides a sustainable approach to tackle the managing issue of heavily metal contaminated graphite waste, but also indicates a promising methodology toward surface decontamination for irradiated graphite in general.


Asunto(s)
Grafito , Residuos Radiactivos , Radiactividad , Uranio , Carbono , Digestión , Residuos Peligrosos , Peróxido de Hidrógeno , Molibdeno , Residuos Radiactivos/análisis , Residuos Radiactivos/prevención & control
17.
Dent Clin North Am ; 66(1): 11-38, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794549

RESUMEN

Periodontitis is a multifactorial inflammatory condition associated with an oral microbiome dysbiosis that results in gingival inflammation and clinical attachment loss. Periodontal therapies are based on scaling and root planing to disturb the bacterial biofilm mechanically and remove calculus and contaminated cementum. Research does not support the use of root modifiers for decontamination and biomodification of periodontally affected root surfaces. Standardized clinical trials in large populations, assessing biological and patient-reported outcome measures, are necessary to evaluate candidate biomaterials for decontamination and biomodification of periodontally affected root surfaces.


Asunto(s)
Descontaminación , Periodontitis , Humanos , Pérdida de la Inserción Periodontal , Regeneración , Aplanamiento de la Raíz , Raíz del Diente
18.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883697

RESUMEN

The issue of heavy metal and radionuclide contamination is still causing a great deal of concern worldwide for environmental protection and industrial sites remediation. Various techniques have been developed for surface decontamination aiming for high decontamination factors (DF) and minimal environmental impact, but strippable polymeric nanocomposite coatings are some of the best candidates in this area. In this study, novel strippable coatings for heavy metal and radionuclides decontamination were developed based on the film-forming ability of polyvinyl alcohol, with the remarkable metal retention capacity of bentonite nanoclay, together with the chelating ability of sodium alginate and with "new-generation" "green" complexing agents: iminodisuccinic acid (IDS) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC). These environmentally friendly water-based decontamination solutions are capable of generating strippable polymeric films with optimized mechanical and thermal properties while exhibiting high decontamination efficiency (DF ≈ 95-98% for heavy metals tested on glass surface and DF ≈ 91-97% for radionuclides 241Am, 90Sr-Y and 137Cs on metal, painted metal, plastic, and glass surfaces).

19.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947739

RESUMEN

The use of nanotechnologies in the applied biomedical sciences can offer a new way to treat infections and disinfect surfaces, materials, and products contaminated with various types of viruses, bacteria, and fungi. The Cu-Au nanoparticles (NPs) were obtained by an eco-friendly method that allowed the obtaining in a one-step process of size controlled, well dispersed, fully reduced, highly stable NPs at very mild conditions, using high energy ionizing radiations. The gamma irradiation was performed in an aqueous system of Cu2+/Au3+/Sodium Dodecyl Sulfate (SDS)/Ethylene Glycol. After irradiation, the change of color to ruby-red was the first indicator for the formation of NPs. Moreover, the UV-Vis spectra showed a maximum absorption peak between 524 and 540 nm, depending on the copper amount. The Cu-Au NPs presented nearly spherical shapes, sizes between 20 and 90 nm, and a zeta potential of about -44 mV indicating a good electrostatic stability. The biocidal properties performed according to various standards applied in the medical area, in dirty conditions, showed a 5 lg reduction for Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae, a 5 lg reduction for both enveloped and non-enveloped viruses such as Adenovirus type 5, Murine Norovirus, and human Coronavirus 229E, and a 4 lg reduction for Candida albicans, respectively. Thus, the radiochemically synthesized Cu-Au alloy NPs proved to have high biocide efficiency against the tested bacteria, fungi, and viruses (both encapsulated and non-encapsulated). Therefore, these nanoparticle solutions are suitable to be used as disinfectants in the decontamination of hospital surfaces or public areas characterized by high levels of microbiological contamination.

20.
Ultrason Sonochem ; 79: 105787, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34634550

RESUMEN

The effects of multi-frequency ultrasound on surface decontamination and structural characteristics of large yellow croaker (Pseudosciaena crocea) during refrigerated storage were evaluated. The results of total viable counts (TVCs) and psychrophilic bacteria counts (PBCs) demonstrated that multi-frequency ultrasound retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the increase of ultrasound frequencies. However, compared with triple-frequency ultrasound (TUS, 20/28/40 kHz) treatment, dual-frequency ultrasound (DUS, 20/28 kHz) treatment had higher water-holding capacity (WHC) and immobilized water content, better texture characteristics, lower pH and total volatile basic nitrogen (TVB-N). Through the results of myofibrillar fragmentation index (MFI), intrinsic fluorescence intensity (IFI) and atomic force microscope (AFM), multi-frequency ultrasound could effectively stabilize the myofibrillar protein structure of refrigerated large yellow croaker, which could maintain better texture characteristics. The effects of DUS were the most significant. Therefore, multi-frequency ultrasound treatment could inhibit the growth of microorganisms and improve the structural characteristics of large yellow croaker during refrigerated storage.


Asunto(s)
Descontaminación , Perciformes , Animales , Nitrógeno , Ultrasonido , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA