Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Water Res ; 266: 122419, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39270500

RESUMEN

Understanding and predicting the ecological status of urbanized rivers is crucial for their restoration and management. However, the complex and nonlinear nature of ecological responses poses a challenge to the development of predictive models. Here, the study investigated and predicted the status of eukaryotic plankton communities in urbanized rivers by coupling environmental DNA metabarcoding, the alternative stable states theory, and supervised machine learning (SML) models. The results revealed two distinct states of eukaryotic plankton communities under similar environmental conditions: one state was characterized by the enrichment of a diverse phytoplankton population and the high relative abundance of protozoa, whereas the alternative state was characterized by abundant phytoplankton and fungi with an associated risk of algal blooms. Turbidity was identified as a key driver based on the SML model and Mantel test. Potential analysis demonstrated that the response pattern of eukaryotic plankton communities to turbidity was thresholds with hysteresis (Threshold1 = 17 NTU, Threshold2 = 24 NTU). A reduction in turbidity induced a regime shift in the eukaryotic plankton community toward an alternative state associated with a risk of algal blooms. In the prediction of ecological status, both SML models showed excellent performance (R2 > 0.80, RMSE < 0.1, Kappa > 0.70). Additionally, SHapley Additive exPlanations analysis identified turbidity, chlorophyll-a, chemical oxygen demand (COD), ammonia nitrogen and green algae's amplicon sequence variants as crucial features for prediction, with turbidity and COD showing a synergistic effect on ecological status. A framework was further proposed to enhance the understanding and prediction of ecological status in urbanized rivers. The obtained results of this study demonstrated the feasibility of using SML models to predict and explain the ecological status of urbanized rivers with alternative stable states. This provides valuable insights for the application of SML models in the restoration and management of urbanized rivers.

2.
J Affect Disord ; 365: 126-133, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142588

RESUMEN

BACKGROUND: Prevalence of suicidal behaviour increases rapidly in middle to late adolescence. Predicting suicide attempts across different ages would enhance our understanding of how suicidal behaviour manifests in this period of rapid development. This study aimed to develop separate models to predict suicide attempts within a cohort at middle and late adolescence. It also sought to examine differences between the models derived across both developmental stages. METHODS: This study used data from the nationally representative Longitudinal Study of Australian Children (N = 2266). We selected over 700 potential suicide attempt predictors measured via self-report questionnaires, and linked healthcare and education administrative datasets. Logistic regression, random forests, and gradient boosting algorithms were developed to predict suicide attempts across two stages (mid-adolescence: 14-15 years; late adolescence: 18-19 years) using predictors sampled two years prior (mid-adolescence: 12-13 years; late adolescence: 16-17 years). RESULTS: The late adolescence models (AUROC = 0.77-0.88, F1-score = 0.22-0.28, Sensitivity = 0.54-0.64) performed better than the mid-adolescence models (AUROC = 0.70-0.76, F1-score = 0.12-0.19, Sensitivity = 0.40-0.64). The most important features for predicting suicide attempts in mid-adolescence were mostly school-related, while the most important features in late adolescence included measures of prior suicidality, psychosocial health, and future plans. CONCLUSIONS: To date, this is the first study to use machine learning models to predict suicide attempts at different ages. Our findings suggest that the optimal suicide risk prediction model differs by stage of adolescence. Future research and interventions should consider that risk presentations can change rapidly during adolescence.


Asunto(s)
Aprendizaje Automático , Intento de Suicidio , Humanos , Adolescente , Intento de Suicidio/estadística & datos numéricos , Femenino , Masculino , Estudios Longitudinales , Australia/epidemiología , Factores de Edad , Niño , Adulto Joven , Factores de Riesgo , Modelos Logísticos
3.
J Environ Manage ; 369: 122250, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213853

RESUMEN

High diversity seabed habitats, such as shellfish aggregations, play a significant role in marine ecosystem sustainability but are susceptible to bottom disturbance induced by anthropogenic activities. Regular monitoring of these habitats with effective mapping methods is therefore essential. Multibeam echosounder (MBES) has been widely used in recent decades for seabed characterization due to its non-destructive manner and extensive spatial coverage compared to traditional methods like bottom sampling. Nevertheless, bottom sampling remains essential to link ground truth with acoustic seabed classification. Using seabed samples and MBES measurements, machine learning techniques are commonly employed to model their relationships and generate classification maps of an extended seabed. However, limited ground truth data, resulting from constraints in regulations, budget, or time, may impede the development of robust machine learning models. To address this challenge, we applied a semi-supervised machine learning method to classify seabed sediments of a blue mussel (Mytilus edulis) cultivation area in the Oosterschelde, the Netherlands. We utilized nine boxcore samples to generate pseudo-labels on MBES data. These pseudo-labels enlarged the training data size, facilitated the training of three comprehensive machine learning algorithms (Gradient Boosting, Random Forest, and Support Vector Machine), and helped to classify the study site into mussel and non-mussel areas. We found the geomorphological and backscatter-related features to be complementary for mussel culture detection. Our classification results were demonstrated effective through expert knowledge of this cultivation area and brought insights for future research on natural mussel habitats.


Asunto(s)
Ecosistema , Animales , Monitoreo del Ambiente/métodos , Aprendizaje Automático Supervisado , Países Bajos , Bivalvos , Aprendizaje Automático , Mytilus edulis
4.
JAMIA Open ; 7(3): ooae078, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39156046

RESUMEN

Objectives: Accelerating demand for patient messaging has impacted the practice of many providers. Messages are not recommended for urgent medical issues, but some do require rapid attention. This presents an opportunity for artificial intelligence (AI) methods to prioritize review of messages. Our study aimed to highlight some patient portal messages for prioritized review using a custom AI system integrated into the electronic health record (EHR). Materials and Methods: We developed a Bidirectional Encoder Representations from Transformers (BERT)-based large language model using 40 132 patient-sent messages to identify patterns involving high acuity topics that warrant an immediate callback. The model was then implemented into 2 shared pools of patient messages managed by dozens of registered nurses. A primary outcome, such as the time before messages were read, was evaluated with a difference-in-difference methodology. Results: Model validation on an expert-reviewed dataset (n = 7260) yielded very promising performance (C-statistic = 97%, average-precision = 72%). A binarized output (precision = 67%, sensitivity = 63%) was integrated into the EHR for 2 years. In a pre-post analysis (n = 396 466), an improvement exceeding the trend was observed in the time high-scoring messages sit unread (21 minutes, 63 vs 42 for messages sent outside business hours). Discussion: Our work shows great promise in improving care when AI is aligned with human workflow. Future work involves audience expansion, aiding users with suggested actions, and drafting responses. Conclusion: Many patients utilize patient portal messages, and while most messages are routine, a small fraction describe alarming symptoms. Our AI-based workflow shortens the turnaround time to get a trained clinician to review these messages to provide safer, higher-quality care.

5.
J Med Internet Res ; 26: e55937, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141911

RESUMEN

BACKGROUND: Nowadays, social media plays a crucial role in disseminating information about cancer prevention and treatment. A growing body of research has focused on assessing access and communication effects of cancer information on social media. However, there remains a limited understanding of the comprehensive presentation of cancer prevention and treatment methods across social media platforms. Furthermore, research comparing the differences between medical social media (MSM) and common social media (CSM) is also lacking. OBJECTIVE: Using big data analytics, this study aims to comprehensively map the characteristics of cancer treatment and prevention information on MSM and CSM. This approach promises to enhance cancer coverage and assist patients in making informed treatment decisions. METHODS: We collected all posts (N=60,843) from 4 medical WeChat official accounts (accounts with professional medical backgrounds, classified as MSM in this paper) and 5 health and lifestyle WeChat official accounts (accounts with nonprofessional medical backgrounds, classified as CSM in this paper). We applied latent Dirichlet allocation topic modeling to extract cancer-related posts (N=8427) and identified 6 cancer themes separately in CSM and MSM. After manually labeling posts according to our codebook, we used a neural-based method for automated labeling. Specifically, we framed our task as a multilabel task and utilized different pretrained models, such as Bidirectional Encoder Representations from Transformers (BERT) and Global Vectors for Word Representation (GloVe), to learn document-level semantic representations for labeling. RESULTS: We analyzed a total of 4479 articles from MSM and 3948 articles from CSM related to cancer. Among these, 35.52% (2993/8427) contained prevention information and 44.43% (3744/8427) contained treatment information. Themes in CSM were predominantly related to lifestyle, whereas MSM focused more on medical aspects. The most frequently mentioned prevention measures were early screening and testing, healthy diet, and physical exercise. MSM mentioned vaccinations for cancer prevention more frequently compared with CSM. Both types of media provided limited coverage of radiation prevention (including sun protection) and breastfeeding. The most mentioned treatment measures were surgery, chemotherapy, and radiotherapy. Compared with MSM (1137/8427, 13.49%), CSM (2993/8427, 35.52%) focused more on prevention. CONCLUSIONS: The information about cancer prevention and treatment on social media revealed a lack of balance. The focus was primarily limited to a few aspects, indicating a need for broader coverage of prevention measures and treatments in social media. Additionally, the study's findings underscored the potential of applying machine learning to content analysis as a promising research approach for mapping key dimensions of cancer information on social media. These findings hold methodological and practical significance for future studies and health promotion.


Asunto(s)
Aprendizaje Automático , Neoplasias , Medios de Comunicación Sociales , Medios de Comunicación Sociales/estadística & datos numéricos , Humanos , Neoplasias/prevención & control , Neoplasias/terapia , China
6.
Artículo en Inglés | MEDLINE | ID: mdl-39154849

RESUMEN

BACKGROUND: Reduced bone density is recognized as a predictor for potential complications in reverse shoulder arthroplasty (RSA). While humeral and glenoid planning based on preoperative computed tomography (CT) scans assist in implant selection and position, reproducible methods for quantifying the patients' bone density are currently not available. The purpose of this study was to perform bone density analyses including patient specific calibration in an RSA cohort based on preoperative CT imaging. It was hypothesized that preoperative CT bone density measures would provide objective quantification of the patients' humeral bone quality. METHODS: This study consisted of three parts, (1) analysis of a patient-specific calibration method in cadaveric CT scans, (2) retrospective application in a clinical RSA cohort, and (3) clustering and classification with machine learning models. Forty cadaveric shoulders were scanned in a clinical CT and compared regarding calibration with density phantoms, air muscle, and fat (patient-specific) or standard Hounsfield unit. Post-scan patient-specific calibration was used to improve the extraction of three-dimensional regions of interest for retrospective bone density analysis in a clinical RSA cohort (n=345). Machine learning models were used to improve the clustering (Hierarchical Ward) and classification (Support Vector Machine (SVM)) of low bone densities in the respective patients. RESULTS: The patient-specific calibration method demonstrated improved accuracy with excellent intraclass correlation coefficients (ICC) for cylindrical cancellous bone densities (ICC>0.75). Clustering partitioned the training data set into a high-density subgroup consisting of 96 patients and a low-density subgroup consisting of 146 patients, showing significant differences between these groups. The SVM showed optimized prediction accuracy of low and high bone densities compared to conventional statistics in the training (accuracy=91.2%; AUC=0.967) and testing (accuracy=90.5 %; AUC=0.958) data set. CONCLUSION: Preoperative CT scans can be used to quantify the proximal humeral bone quality in patients undergoing RSA. The use of machine learning models and patient-specific calibration on bone mineral density demonstrated that multiple 3D bone density scores improved the accuracy of objective preoperative bone quality assessment. The trained model could provide preoperative information to surgeons treating patients with potentially poor bone quality.

7.
Neurocrit Care ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107660

RESUMEN

Clinical prediction models serve as valuable instruments for assessing the risk of crucial outcomes and facilitating decision-making in clinical settings. Constructing these models requires nuanced analytical decisions and expertise informed by the current statistical literature. Access and thorough understanding of such literature may be limited for neurocritical care physicians, which may hinder the interpretation of existing predictive models. The present emphasis is on narrowing this knowledge gap by providing neurocritical care specialists with methodological guidance for interpreting predictive models in neurocritical care. Presented are the statistical learning principles integral to constructing a model predicting hospital mortality (nonsurvival during hospitalization) in patients with moderate and severe blunt traumatic brain injury using components of the IMPACT-Core model. Discussion encompasses critical elements such as model flexibility, hyperparameter selection, data imbalance, cross-validation, model assessment (discrimination and calibration), prediction instability, and probability thresholds. The intricate interplay among these components, the data set, and the clincal context of neurocritical care is elaborated. Leveraging this comprehensive exploration of statistical learning can enhance comprehension of articles encompassing model generation, tailored clinical care, and, ultimately, better interpretation and clinical applicability of predictive models.

8.
Exp Appl Acarol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177713

RESUMEN

Two-spotted spider mite (Tetranychus urticae) is an important greenhouse pest. In cucumbers, heavy infestations lead to the complete loss of leaf assimilation surface, resulting in plant death. Symptoms caused by spider mite feeding alter the light reflection of leaves and could therefore be optically detected. Machine learning methods have already been employed to analyze spectral information in order to differentiate between healthy and spider mite-infested leaves of crops such as tomatoes or cotton. In this study, machine learning methods were applied to cucumbers. Hyperspectral data of leaves were recorded under controlled conditions. Effective wavelengths were identified using three feature selection methods. Subsequently, three supervised machine learning algorithms were used to classify healthy and spider mite-infested leaves. All combinations of feature selection and classification methods yielded accuracy of over 80%, even when using ten or five wavelengths. These results suggest that machine learning methods are a powerful tool for image-based detection of spider mites in cucumbers. In addition, due to the limited number of wavelengths, there is also substantial potential for practical application.

9.
J Water Health ; 22(8): 1387-1408, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212277

RESUMEN

India has been dealing with fluoride contamination of groundwater for the past few decades. Long-term exposure of fluoride can cause skeletal and dental fluorosis. Therefore, an in-depth exploration of fluoride concentrations in different parts of India is desirable. This work employs machine learning algorithms to analyze the fluoride concentrations in five major affected Indian states (Andhra Pradesh, Rajasthan, Tamil Nadu, Telangana and West Bengal). A correlation matrix was used to identify appropriate predictor variables for fluoride prediction. The various algorithms used for predictions included K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector classifier (SVC), Gaussian NB, MLP classifier, decision tree classifier, gradient boosting classifier, voting classifier soft and voting classifier hard. The performance of these models is assessed over accuracy, precision, recall and error rate and receiver operating curve. As the dataset was skewed, the performance of models was evaluated before and after resampling. Analysis of results indicates that the RF model is the best model for predicting fluoride contamination in groundwater in Indian states.


Asunto(s)
Fluoruros , Agua Subterránea , Contaminantes Químicos del Agua , India , Agua Subterránea/análisis , Agua Subterránea/química , Fluoruros/análisis , Contaminantes Químicos del Agua/análisis , Aprendizaje Automático Supervisado , Monitoreo del Ambiente/métodos , Algoritmos
10.
Sensors (Basel) ; 24(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39205012

RESUMEN

The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: three Deep Learning (DL) methods (Artificial Neural Network, Long Short-Term Memory, and Convolutional Neural Network) and three Supervised Machine Learning (SML) methods (Least Squares, Support Vector Regression, and Random Forest (RF)). Data were collected from nine subjects across six activities: normal and slow walking, static with and without carrying a load, and two Manual Material Handling activities. This study has two main contributions: first, the estimation of GRF components (Fx, Fy, and Fz) during the six activities, two of which have never been studied; second, the comparison of the accuracy of GRF component estimation between the six methods for each activity. RF provided the most accurate estimation for static situations, with mean RMSE values of RMSE_Fx = 1.65 N, RMSE_Fy = 1.35 N, and RMSE_Fz = 7.97 N for the mean absolute values measured by the force plate (reference) RMSE_Fx = 14.10 N, RMSE_Fy = 3.83 N, and RMSE_Fz = 397.45 N. In our study, we found that RF, an SML method, surpassed the experimented DL methods.


Asunto(s)
Aprendizaje Profundo , Presión , Aprendizaje Automático Supervisado , Humanos , Masculino , Caminata/fisiología , Redes Neurales de la Computación , Zapatos , Adulto , Femenino , Pie/fisiología , Fenómenos Biomecánicos/fisiología , Adulto Joven
11.
Vaccine ; 42(22): 126204, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39126830

RESUMEN

The ESKAPE family, comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., poses a significant global threat due to their heightened virulence and extensive antibiotic resistance. These pathogens contribute largely to the prevalence of nosocomial or hospital-acquired infections, resulting in high morbidity and mortality rates. To tackle this healthcare problem urgent measures are needed, including development of innovative vaccines and therapeutic strategies. Designing vaccines involves a complex and resource-intensive process of identifying protective antigens and potential vaccine candidates (PVCs) from pathogens. Reverse vaccinology (RV), an approach based on genomics, made this process more efficient by leveraging bioinformatics tools to identify potential vaccine candidates. In recent years, artificial intelligence and machine learning (ML) techniques has shown promise in enhancing the accuracy and efficiency of reverse vaccinology. This study introduces a supervised ML classification framework, to predict potential vaccine candidates specifically against ESKAPE pathogens. The model's training utilized biological and physicochemical properties from a dataset containing protective antigens and non-protective proteins of ESKAPE pathogens. Conventional autoencoders based strategy was employed for feature encoding and selection. During the training process, seven machine learning algorithms were trained and subjected to Stratified 5-fold Cross Validation. Random Forest and Logistic Regression exhibited best performance in various metrics including accuracy, precision, recall, WF1 score, and Area under the curve. An ensemble model was developed, to take collective strengths of both the algorithms. To assess efficacy of our final ensemble model, a high-quality benchmark dataset was employed. VacSol-ML(ESKAPE) demonstrated outstanding discrimination between protective vaccine candidates (PVCs) and non-protective antigens. VacSol-ML(ESKAPE), proves to be an invaluable tool in expediting vaccine development for these pathogens. Accessible to the public through both a web server and standalone version, it encourages collaborative research. The web-based and standalone tools are available at http://vacsolml.mgbio.tech/.


Asunto(s)
Antígenos Bacterianos , Vacunas Bacterianas , Aprendizaje Automático , Antígenos Bacterianos/inmunología , Humanos , Vacunas Bacterianas/inmunología , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Enterococcus faecium/inmunología , Enterococcus faecium/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/genética , Acinetobacter baumannii/inmunología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Biología Computacional/métodos , Enterobacter/inmunología , Enterobacter/genética , Vacunología/métodos
12.
Health Inf Manag ; : 18333583241256048, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051460

RESUMEN

BACKGROUND: Hospital-acquired complications (HACs) have an adverse impact on patient recovery by impeding their path to full recovery and increasing healthcare costs. OBJECTIVE: The aim of this study was to create a HAC risk prediction machine learning (ML) framework using hospital administrative data collections within North Metropolitan Health Service (NMHS), Western Australia. METHOD: A retrospective cohort study was performed among 64,315 patients between July 2020 to June 2022 to develop an automated ML framework by inputting HAC and the healthcare site to obtain site-specific predictive algorithms for patients admitted to the hospital in NMHS. Univariate analysis was used for initial feature screening for 270 variables. Of these, 77 variables had significant relationship with any HAC. After excluding non-contemporaneous data, 37 variables were included in developing the ML framework based on logistic regression (LR), decision tree (DT) and random forest (RF) models to predict occurrence of four specific HACs: delirium, aspiration pneumonia, pneumonia and urinary tract infection. RESULTS: All models exhibited similar performance with area under the curve scores around 0.90 for both training and testing datasets. For sensitivity, DT and RF exceeded LR performance while on average, false positives were lowest for LR-based models. Patient's length of stay, Charlson Index, operation length and intensive care unit stay were common predictors. CONCLUSION: Integrating ML-based risk detection systems into clinical workflows can potentially enhance patient safety and optimise resource allocation. LR-based models exhibited best performance. IMPLICATIONS: We have successfully developed a "real-time" risk prediction model, where patient risk scores are calculated and reviewed daily.

13.
NMR Biomed ; : e5220, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054694

RESUMEN

Posttraumatic stress disorder (PTSD) is a chronic psychiatric condition that follows exposure to a traumatic stressor. Though previous in vivo proton (1H) MRS) research conducted at 4 T or lower has identified alterations in glutamate metabolism associated with PTSD predisposition and/or progression, no prior investigations have been conducted at higher field strength. In addition, earlier studies have not extensively addressed the impact of psychiatric comorbidities such as major depressive disorder (MDD) on PTSD-associated 1H-MRS-visible brain metabolite abnormalities. Here we employ 7 T 1H MRS to examine concentrations of glutamate, glutamine, GABA, and glutathione in the medial prefrontal cortex (mPFC) of PTSD patients with MDD (PTSD+MDD+; N = 6) or without MDD (PTSD+MDD-; N = 5), as well as trauma-unmatched controls without PTSD but with MDD (PTSD-MDD+; N = 9) or without MDD (PTSD-MDD-; N = 18). Participants with PTSD demonstrated decreased ratios of GABA to glutamine relative to healthy PTSD-MDD- controls but no single-metabolite abnormalities. When comorbid MDD was considered, however, MDD but not PTSD diagnosis was significantly associated with increased mPFC glutamine concentration and decreased glutamate:glutamine ratio. In addition, all participants with PTSD and/or MDD collectively demonstrated decreased glutathione relative to healthy PTSD-MDD- controls. Despite limited findings in single metabolites, patterns of abnormality in prefrontal metabolite concentrations among individuals with PTSD and/or MDD enabled supervised classification to separate them from healthy controls with 80+% sensitivity and specificity, with glutathione, glutamine, and myoinositol consistently among the most informative metabolites for this classification. Our findings indicate that MDD can be an important factor in mPFC glutamate metabolism abnormalities observed using 1H MRS in cohorts with PTSD.

14.
BMC Womens Health ; 24(1): 393, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978015

RESUMEN

BACKGROUND: Cervical cancer (CC) is among the most prevalent cancer types among women with the highest prevalence in low- and middle-income countries (LMICs). It is a curable disease if detected early. Machine learning (ML) techniques can aid in early detection and prediction thus reducing screening and treatment costs. This study focused on women living with HIV (WLHIV) in Uganda. Its aim was to identify the best predictors of CC and the supervised ML model that best predicts CC among WLHIV. METHODS: Secondary data that included 3025 women from three health facilities in central Uganda was used. A multivariate binary logistic regression and recursive feature elimination with random forest (RFERF) were used to identify the best predictors. Five models; logistic regression (LR), random forest (RF), K-Nearest neighbor (KNN), support vector machine (SVM), and multi-layer perceptron (MLP) were applied to identify the out-performer. The confusion matrix and the area under the receiver operating characteristic curve (AUC/ROC) were used to evaluate the models. RESULTS: The results revealed that duration on antiretroviral therapy (ART), WHO clinical stage, TPT status, Viral load status, and family planning were commonly selected by the two techniques and thus highly significant in CC prediction. The RF from the RFERF-selected features outperformed other models with the highest scores of 90% accuracy and 0.901 AUC. CONCLUSION: Early identification of CC and knowledge of the risk factors could help control the disease. The RF outperformed other models applied regardless of the selection technique used. Future research can be expanded to include ART-naïve women in predicting CC.


Asunto(s)
Infecciones por VIH , Neoplasias del Cuello Uterino , Humanos , Femenino , Uganda/epidemiología , Neoplasias del Cuello Uterino/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Adulto , Aprendizaje Automático Supervisado , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico , Modelos Logísticos , Algoritmos , Máquina de Vectores de Soporte
15.
J Cardiovasc Dev Dis ; 11(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057627

RESUMEN

Stroke constitutes a significant public health concern due to its impact on mortality and morbidity. This study investigates the utility of machine learning algorithms in predicting stroke and identifying key risk factors using data from the Suita study, comprising 7389 participants and 53 variables. Initially, unsupervised k-prototype clustering categorized participants into risk clusters, while five supervised models including Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosted Machine (LightGBM) were employed to predict stroke outcomes. Stroke incidence disparities among identified risk clusters using the unsupervised k-prototype clustering method are substantial, according to the findings. Supervised learning, particularly RF, was a preferable option because of the higher levels of performance metrics. The Shapley Additive Explanations (SHAP) method identified age, systolic blood pressure, hypertension, estimated glomerular filtration rate, metabolic syndrome, and blood glucose level as key predictors of stroke, aligning with findings from the unsupervised clustering approach in high-risk groups. Additionally, previously unidentified risk factors such as elbow joint thickness, fructosamine, hemoglobin, and calcium level demonstrate potential for stroke prediction. In conclusion, machine learning facilitated accurate stroke risk predictions and highlighted potential biomarkers, offering a data-driven framework for risk assessment and biomarker discovery.

16.
J Clin Orthop Trauma ; 53: 102470, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39045495

RESUMEN

Background: The success of Total Hip Arthroplasty (THA) is influenced by preoperative planning, with traditional 2D approaches displaying varied reliability as well. The present study investigates the use of Supervised Machine Learning (SML) models with patient-related features to improve accuracy. Methods: Preoperative and perioperative data, as well as planning and final implant information, were obtained from 800 consecutive cementless primary THA, which was performed uniformly by a specialized surgical team. Six Supervised Machine Learning models were trained and validated using patient characteristics and implant data: Logistic Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Decision Tree (CART), Gaussian Naive Bayes (GN), and Support Vector Classifier (SVC). The models' ability to predict planning reliability and leg length disparity was evaluated. Results: KNN performed better on the cup model (97.9 %), femur model (96.7 %), and femur size (99.2 %). SVM emerged as the model with the highest accuracy for cup size (60.4 %) and head size (62.1 %). CART had the best accuracy (99 %) when determining leg length discrepancy. Conclusion: The study demonstrates the utility of Supervised Machine Learning models, specifically KNN, in predicting the accuracy of preoperative planning in THA. The accuracy of these models, which are driven by patient-related characteristics, provides useful information for optimizing patients' selection and improving surgical outcome.

17.
Sci Rep ; 14(1): 16908, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043685

RESUMEN

Biofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ( α -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of α -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and α -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38972630

RESUMEN

OBJECTIVE: Challenging infrarenal aortic neck characteristics have been associated with an increased risk of type Ia endoleak after endovascular aneurysm repair (EVAR). Short apposition (< 10 mm circumferential shortest apposition length [SAL]) on the first post-operative computed tomography angiography (CTA) has been associated with type Ia endoleak. Therefore, this study aimed to develop a model to predict post-operative SAL in patients with an abdominal aortic aneurysm based on the pre-operative shape. METHODS: A statistical shape model was developed to obtain principal component scores. The dataset comprised patients treated by standard EVAR without complications (n = 93) enriched with patients with a late type Ia endoleak (n = 54). The infrarenal SAL was obtained from the first post-operative CTA and subsequently binarised (< 10 mm and ≥ 10 mm). The principal component scores that were statistically different between the SAL groups were used as input for five classification models, and evaluated by means of leave one out cross validation. Area under the receiver operating characteristic curves (AUC), accuracy, sensitivity, and specificity were determined for each classification model. RESULTS: Of the 147 patients, 24 patients had an infrarenal SAL < 10 mm and 123 patients had a SAL ≥ 10 mm. The gradient boosting model resulted in the highest AUC of 0.77. Using this model, 114 patients (77.6%) were correctly classified; sensitivity (< 10 mm apposition was correctly predicted) and specificity (≥ 10 mm apposition was correctly predicted) were 0.70 and 0.79 based on a threshold of 0.21, respectively. CONCLUSION: A model was developed to predict which patients undergoing EVAR will achieve sufficient graft apposition (≥ 10 mm) in the infrarenal aortic neck based on a statistical shape model of pre-operative CTA data. This model can help vascular specialists during the planning phase to accurately identify patients who are unlikely to achieve sufficient apposition after standard EVAR.

19.
Sci Rep ; 14(1): 17263, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068287

RESUMEN

The excessive accumulation and malfunctioning of visceral adipose tissue (VAT) is a major determinant of increased risk of obesity-related comorbidities. Thus, risk stratification of people living with obesity according to their amount of VAT is of clinical interest. Currently, the most common VAT measurement methods include mathematical formulae based on anthropometric dimensions, often biased by human measurement errors, bio-impedance, and image techniques such as X-ray absorptiometry (DXA) analysis, which requires specialized equipment. However, previous studies showed the possibility of classifying people living with obesity according to their VAT through blood chemical concentrations by applying machine learning techniques. In addition, most of the efforts were spent on men living with obesity while little was done for women. Therefore, this study aims to compare the performance of the multilinear regression model (MLR) in estimating VAT and six different supervised machine learning classifiers, including logistic regression (LR), support vector machine and decision tree-based models, to categorize 149 women living with obesity. For clustering, the study population was categorized into classes 0, 1, and 2 according to their VAT and the accuracy of each MLR and classification model was evaluated using DXA-data (DXAdata), blood chemical concentrations (BLDdata), and both DXAdata and BLDdata together (ALLdata). Estimation error and R 2 were computed for MLR, while receiver operating characteristic (ROC) and precision-recall curves (PR) area under the curve (AUC) were used to assess the performance of every classification model. MLR models showed a poor ability to estimate VAT with mean absolute error ≥ 401.40 and R 2 ≤ 0.62 in all the datasets. The highest accuracy was found for LR with values of 0.57, 0.63, and 0.53 for ALLdata, DXAdata, and BLDdata, respectively. The ROC AUC showed a poor ability of both ALLdata and DXAdata to distinguish class 1 from classes 0 and 2 (AUC = 0.31, 0.71, and 0.85, respectively) as also confirmed by PR (AUC = 0.24, 0.57, and 0.73, respectively). However, improved performances were obtained when applying LR model to BLDdata (ROC AUC ≥ 0.61 and PR AUC ≥ 0.42), especially for class 1. These results seem to suggest that, while a direct and reliable estimation of VAT was not possible in our cohort, blood sample-derived information can robustly classify women living with obesity by machine learning-based classifiers, a fact that could benefit the clinical practice, especially in those health centres where medical imaging devices are not available. Nonetheless, these promising findings should be further validated over a larger population.


Asunto(s)
Absorciometría de Fotón , Grasa Intraabdominal , Aprendizaje Automático , Obesidad , Humanos , Femenino , Obesidad/complicaciones , Persona de Mediana Edad , Adulto , Absorciometría de Fotón/métodos , Máquina de Vectores de Soporte , Árboles de Decisión , Anciano
20.
R Soc Open Sci ; 11(7): 240477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39076369

RESUMEN

Acoustic signals are vital in animal communication, and quantifying them is fundamental for understanding animal behaviour and ecology. Vocalizations can be classified into acoustically and functionally or contextually distinct categories, but establishing these categories can be challenging. Newly developed methods, such as machine learning, can provide solutions for classification tasks. The plains zebra is known for its loud and specific vocalizations, yet limited knowledge exists on the structure and information content of its vocalzations. In this study, we employed both feature-based and spectrogram-based algorithms, incorporating supervised and unsupervised machine learning methods to enhance robustness in categorizing zebra vocalization types. Additionally, we implemented a permuted discriminant function analysis to examine the individual identity information contained in the identified vocalization types. The findings revealed at least four distinct vocalization types-the 'snort', the 'soft snort', the 'squeal' and the 'quagga quagga'-with individual differences observed mostly in snorts, and to a lesser extent in squeals. Analyses based on acoustic features outperformed those based on spectrograms, but each excelled in characterizing different vocalization types. We thus recommend the combined use of these two approaches. This study offers valuable insights into plains zebra vocalization, with implications for future comprehensive explorations in animal communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA