Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
BMC Biomed Eng ; 6(1): 8, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218936

RESUMEN

BACKGROUND: Restorative solutions designed for edentulous patients such as dentures and their accompanying denture adhesives operate in the complex and dynamic environment represented by human oral physiology. Developing material models accounting for the viscoelastic behavior of denture adhesives can facilitate their further optimization within that unique physiological environment. This study aims to statistically quantify the degree of significance of three physiological variables - namely: temperature, adhesive swelling, and pH - on denture adhesive mechanical behavior. Further, based on these statistical significance estimations, a previously-developed viscoelastic material modelling approach for such denture adhesives is further expanded and developed to capture these variables' effects on mechanical behavior. METHODS: In this study a comparable version of Denture adhesive Corega Comfort was analysed rheologically using the steady state frequency sweep tests. The experimentally derived rheological storage and loss modulus values for the selected physiological variables were statistically analyzed using multi parameter linear regression analysis and the Pearson's coefficient technique to understand the significance of each individual parameter on the relaxation spectrum of the denture adhesive. Subsequently, the parameters are incorporated into a viscoelastic material model based on Prony series discretization and time-temperature superposition, and the mathematical relationship for the loss modulus is deduced. RESULTS: The results of this study clearly indicated that the variation in both the storage and loss modulus values can be accurately predicted using the oral cavity physiological parameters of temperature, swelling ratio, and pH with an adjusted R2 value of 0.85. The R2 value from the multi-parameter regression analysis indicated that the predictor variables can estimate the loss and storage modulus with a reasonable accuracy for at least 85% of the rheologically determined continuous relaxation spectrum with a confidence level of 98%. The Pearson's coefficient for the independent variables indicated that temperature and swelling have a strong influence on the loss modulus, whereas pH had a weak influence. Based on statistical analysis, these mathematical relationships were further developed in this study. CONCLUSIONS: This multi-parameter viscoelastic material model is intended to facilitate future detailed numerical investigations performed with implementation of denture adhesives using the finite element method.

2.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274118

RESUMEN

Polyamide 6 (PA6) film as a typical viscoelastic material, satisfies the time-temperature superposition (TTS), and demonstrates obvious dynamic strain amplitude and frequency correlation under dynamic load. The investigation of the dynamic mechanical behavior of PA6 film is essential to ensure the safety of these materials in practical applications. In addition, dynamic mechanical property testing under conventional experimental conditions generally focuses on the short-term mechanical performance of materials. Therefore, the dynamic viscoelasticity of PA6 film was tested using a dynamic thermo-mechanical analyzer (DMA) in this study, and the complex modulus master curve was constructed based on time-temperature superposition (TTS) to realize the accelerated characterization of long-term mechanical properties. Furthermore, according to experimentally obtained asymmetric characteristics of the Cole-Cole diagram and the loss modulus master curve of the PA6 film, the parameter distribution of the fractional Zener model and the modified fractional Zener model were compared, and the asymmetric dynamic viscoelastic response of PA6 film under different conditions was systematically investigated using these models. The results indicate that the modified fractional Zener model can truly describe the dynamic asymmetric characteristics of PA6 film, verify the feasibility and advantages of the modified fractional rheological model, and provide some theoretical guidance for exploring the tensile rheological mechanism of PA6 film.

3.
Polymers (Basel) ; 16(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125149

RESUMEN

This study emphasizes the influential role of rheology in decoding the viscoelastic properties of pressure-sensitive adhesives (PSAs) vital to predicting key application features such as shear, tack, and peel, depending on the flow characteristics of PSAs during bonding and debonding processes. By applying the principle of time-temperature superposition (TTS), we extend the scope of our frequency analysis, surpassing the technical constraints of the available apparatus. Our exploration aims to uncover the general correlations between PSAs' viscoelastic properties and their performance in end-use applications. Initially, the adhesive performance and viscoelastic properties of a UV-crosslinkable styrene-butadiene-styrene (SBS) model adhesive prior and subsequent to UV irradiation were examined. The subsequent crosslinking reaction increased cohesive strength and heat resistance, although tack and peel strength observed a substantial decline. We successfully demonstrated these effects by logging the viscoelastic properties, specifically the storage modulus G' at lower frequencies, which mirrors the shear strength at higher temperatures and the shift in the tan δ peak to represent each PSA's tack. These correlations were partially reflected in three commercial UV crosslinkable acrylic PSA products, although the effect of UV irradiation was less distinctive. This study also revealed the challenges in predicting tack and peel strength, which result from a complex interplay of bonding and debonding processes. Our findings reinforce the necessity for more sophisticated analysis techniques and models that can accurately predict the end-use performance of PSAs across different physical structures and chemical compositions. Further research is needed to develop these predictive models, which may reduce the need for labor-intensive testing under real-life conditions.

4.
Biomedicines ; 12(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39200307

RESUMEN

The law of superposition underpins first-order linear pharmacokinetic relationships. Most drugs, therefore, after a single dose can be described by first-order or linear processes, which can be superposed to understand multiple-dose regimen behavior. However, there are a number of situations where drugs could display behaviors after multiple dosing that leads to capacity-limited or saturation non-linear kinetics and the law of superposition is overruled. This review presents a practical guide to understand the equations and calculations for single and multiple-dosing regimens after intravenous and oral administration. It also provides the pharmaceutical basis for saturation in ADME processes and the consequent changes in the area under the concentration-time curve, which represents drug exposure that can lead to the modulation of efficacy and/or toxic effects. The pharmacokineticist must implicitly understand the principles of superposition, which are a central tenet of drug behavior and disposition during drug development.

5.
Micromachines (Basel) ; 15(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39203653

RESUMEN

In order to introduce the magnetic field into micro electrical machining technology to explore the influence of magnetic field on micro electrical machining, the development of a precision controllable magnetic field-assisted platform is particularly important. This platform needs to precisely control the spatial magnetic field. This study first completes the hardware design and construction of the magnetic field generation device, using electromagnetic coils with soft iron cores as the sources of the magnetic field. Mathematical models of the magnetic field are established and calibrated. Since the magnetic dipole model cannot effectively describe the magnetic field generated by the electromagnetic coil, this study adopts a more precise description method: the spherical harmonic function expansion model and the magnetic multipole superposition model. The calibration of the magnetic field model is based on actual excitation magnetic field data, so a magnetic field sampling device is designed to obtain the excitation magnetic field of the workspace. The model is calibrated based on a combination of the theoretical model and magnetic field data, and the performance of the constructed setup is analyzed. Finally, a magnetic field-assisted platform has been developed which can generate magnetic fields in any direction within the workspace with intensities ranging from 0 to 0.2 T. Its magnetic field model arrives at an error percentage of 2.986%, a variance of 0.9977, and a root mean square error (RMSE) of 0.71 mT, achieving precise control of the magnetic field in the workspace.

6.
Biosystems ; 242: 105261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964651

RESUMEN

The textbook conceptualization of phenotype creation, "genotype (G) + environment (E) + genotype & environment interactions (GE) ↦ phenotype (Ph)", is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The model is quantum-like, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the E-adaptation processes described by the quantum master equation, Gorini-Kossakowski-Sudarshan-Lindblad equation (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of E-adaptation phenotype's state entropy (disorder) first increases and then falls down - a stable and well-ordered phenotype is created. Traits, an organism's phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.


Asunto(s)
Fenotipo , Teoría Cuántica , Humanos , Interacción Gen-Ambiente , Genotipo , Animales , Ambiente , Adaptación Fisiológica , Entropía , Modelos Genéticos
7.
Int J Environ Health Res ; : 1-15, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825775

RESUMEN

The widely believed Helicobacter pylori infection has never explained the birth-cohort phenomenon of peptic ulcers. Although numerous studies have observed that environmental factors are associated with peptic ulcers, their role in the disease has yet to be identified. A new etiological theory proposed that environmental factors cause peptic ulcers via inducing psychological stress. Starting from this etiology, an integration of the mortality rates caused by social and natural environmental factors reproduced a representative fluctuation curve in the birth-cohort phenomenon, where a causal role of environmental factors in peptic ulcers was hidden. The reproduced fluctuation curve revealed that multiple environmental factors caused the birth-cohort phenomenon by Superposition Mechanism, and the causal role of each individual environmental factor surfaced if the fluctuation curves in the birth-cohort phenomenon were properly differentiated. A full understanding of the birth-cohort phenomenon highlights the importance of environmental management in improving clinical outcomes, and suggests that the Superposition Mechanism is an indispensable methodological concept for life science and medicine.

8.
Network ; : 1-57, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913877

RESUMEN

The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.

9.
Arthropod Struct Dev ; 80: 101361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38795499

RESUMEN

One of the least studied eyes of any beetle taxon are those of the scarabaeoid family Passalidae. Some members of this family of around 600 species worldwide are known to have superposition eyes (Aceraius grandis; A. hikidai) while others have apposition eyes (Cylindrocaulus patalis; Ceracupes yui). In C. yui of nearly 3 cm body length (this paper) the retinal layer is very thin and occupies approximately half of an ommatidium's total length, the latter amounting to 284 and 266 µm in the respective dorsal and ventral eye regions. The two eye regions are almost completely separated by a prominent cuticular canthus, a feature usually associated with the presence of a tracheal tapetum, a clear-zone between dioptric and light-perceiving structures and a regular array of smooth facets. In C. yui the facets are smooth (but not very regular) and a tracheal tapetum and a clear-zone are absent. The rhabdoms, formed by 8-9 retinula cells, are complicated, multilobed structures with widths and lengths of around 15 and 80 µm, respectively. The combination of some superposition and mostly apposition eye features, e.g., extensive corneal exocones, relatively small number of ommatidia, absence of a clear-zone and tracheal bush, suggest an adaptation of this species' eye to the fossorial lifestyle of C. yui, and, thus, a manifestation of the passalid eye's plasticity.


Asunto(s)
Escarabajos , Animales , Escarabajos/ultraestructura , Escarabajos/anatomía & histología , Microscopía Electrónica de Rastreo , Ojo Compuesto de los Artrópodos/ultraestructura , Ojo Compuesto de los Artrópodos/anatomía & histología , Microscopía Electrónica de Transmisión , Femenino , Masculino , Ojo/ultraestructura , Ojo/anatomía & histología
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557679

RESUMEN

The dynamics and variability of protein conformations are directly linked to their functions. Many comparative studies of X-ray protein structures have been conducted to elucidate the relevant conformational changes, dynamics and heterogeneity. The rapid increase in the number of experimentally determined structures has made comparison an effective tool for investigating protein structures. For example, it is now possible to compare structural ensembles formed by enzyme species, variants or the type of ligands bound to them. In this study, the author developed a multilevel model for estimating two covariance matrices that represent inter- and intra-ensemble variability in the Cartesian coordinate space. Principal component analysis using the two estimated covariance matrices identified the inter-/intra-enzyme variabilities, which seemed to be important for the enzyme functions, with the illustrative examples of cytochrome P450 family 2 enzymes and class A $\beta$-lactamases. In P450, in which each enzyme has its own active site of a distinct size, an active-site motion shared universally between the enzymes was captured as the first principal mode of the intra-enzyme covariance matrix. In this case, the method was useful for understanding the conformational variability after adjusting for the differences between enzyme sizes. The developed method is advantageous in small ensemble-size problems and hence promising for use in comparative studies on experimentally determined structures where ensemble sizes are smaller than those generated, for example, by molecular dynamics simulations.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/química , Conformación Proteica , Dominio Catalítico
11.
Foods ; 13(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611282

RESUMEN

Maize kernels were treated using two varieties of drying methodologies, namely combined hot air- and vacuum-drying (HAVD) and natural drying (ND). We performed frequency sweep tests, modified Cole-Cole (MCC) analysis, and frequency-temperature superposition (FTS) on these kernels. The kernels' elastic and viscous properties for ND were higher than those for HAVD. The heterogeneous nature of maize kernel may account for the curvature in MCC plot for the kernel treated by HAVD 75 °C and the failure of FTS. MCC analysis was more sensitive than FTS. The kernel treated by HAVD 75 °C demonstrated thermorheologically simple behavior across the entire temperature range (30-45 °C) in both MCC analysis and FTS. The frequency scale for the kernel treated using HAVD 75 °C was broadened by up to 70,000 Hz. The relaxation processes in the kernel treated by HAVD 75 °C were determined to be mainly associated with subunits of molecules or molecular strands. The data herein could be utilized for maize storage and processing.

12.
Neural Netw ; 176: 106333, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38688072

RESUMEN

In this paper, we show that the Kolmogorov two hidden layer neural network model with a continuous, discontinuous bounded and unbounded activation function in the second hidden layer can precisely represent continuous, discontinuous bounded and all unbounded multivariate functions, respectively.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Humanos
13.
Sci Rep ; 14(1): 7015, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527996

RESUMEN

Analyzing the relations between Boolean functions has many applications in many fields, such as database systems, cryptography, and collision problems. This paper proposes four quantum algorithms that use amplitude amplification techniques to perform set operations, including Intersection, Difference, and Union, on two Boolean functions in O ( N ) time complexity. The proposed algorithms employ two quantum amplitude amplification techniques divided into two stages. The first stage uses the Younes et al. algorithm for quantum searching via entanglement and partial diffusion to prepare incomplete superpositions of the truth set of the first Boolean function. In the second stage, a modified version of Arima's algorithm, along with an oracle that represent the second Boolean function, is employed to handle the set operations. The proposed algorithms have a higher probability of success in more general and comprehensive applications when compared with relevant techniques in literature.

14.
Entropy (Basel) ; 26(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38539690

RESUMEN

The celebrated Blahut-Arimoto algorithm computes the capacity of a discrete memoryless point-to-point channel by alternately maximizing the objective function of a maximization problem. This algorithm has been applied to degraded broadcast channels, in which the supporting hyperplanes of the capacity region are again cast as maximization problems. In this work, we consider general broadcast channels and extend this algorithm to compute inner and outer bounds on the capacity regions. Our main contributions are as follows: first, we show that the optimization problems are max-min problems and that the exchange of minimum and maximum holds; second, we design Blahut-Arimoto algorithms for the maximization part and gradient descent algorithms for the minimization part; third, we provide convergence analysis for both parts. Numerical experiments validate the effectiveness of our algorithms.

15.
Materials (Basel) ; 17(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473513

RESUMEN

There are differences between the dynamic deflection and bending moment (strain) in the same section of continuous girder bridges. However, the selection of the response for calculating dynamic amplification factors (DAFs), which are essential for bridge health monitoring and safety assessment, remains controversial. Modes may play a role in the relationship between the deflection DAF and the bending moment DAF in both numerical analysis and field tests. To investigate the distinctions between the DAFs of the deflection and bending moment in a continuous girder bridge, functional expressions of the DAFs were derived, taking into account multi-factor coupling under concentrated forces. The interaction effects of the mode and road surface condition (RSC), vehicle speed, bridge span length, and span number on the deflection DAF, the bending moment DAF, and the ratio of the deflection DAF to the bending moment DAF (RDM) of precast continuous box-girder bridges were analyzed using vehicle-bridge interaction. To ensure the accuracy of the DAF in numerical computations and experimental tests, two types of accuracy indexes and the corresponding cut-off modes were provided. Validation was conducted by performing dynamic load tests on two field bridges. The results indicate that different modes have a significant effect on the RDM of the mid-span section of a bridge. When considering multiple factors, the deflection DAF and bending moment DAF of the mid-span section increased rapidly with the considered modes and then stabilized. Statistically, the RDM of all nine bridges ranged from 1.00 to 1.12, indicating that the deflection DAF was greater than the bending moment DAF. The suggested cut-off modes can be utilized for efficient and accurate calculation of the DAF and response signal fidelity.

16.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475143

RESUMEN

Overlapped Time Domain Multiplexing (OvTDM) is a high-rate transmission technology that employs the idea of superposition coded modulation (SCM) scheme for signal generation, aiming to achieve maximum channel capacity sharing. Meanwhile, it is also widely considered as a promising technique toward physical layer security. As a main drawback of such system, a high peak-to-average power ratio (PAPR) issue in this system, arising from multi-layer superposition, can be addressed through intentional clipping. However, the detection at the receiver side is vulnerable to nonlinear distortion caused by clipping, which can degrade the performance. To mitigate this distortion, this paper proposed an iterative scheme for estimating and partially canceling clipping distortion at the receiver. We managed to mitigate the impact of clipping noise as much as possible and minimize the cost of optimizing PAPR, thereby improving the transmission performance of OvTDM in the context of amplitude clipping.

17.
Angew Chem Int Ed Engl ; 63(22): e202403775, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38523068

RESUMEN

Organics are gaining significance as electrode materials due to their merits of multi-electron reaction sites, flexible rearrangeable structures and redox reversibility. However, organics encounter finite electronic conductivity and inferior durability especially in organic electrolytes. To circumvent above barriers, we propose a novel design strategy, constructing conductive network structures with extended π-π superposition effect by manipulating intermolecular interaction. Tetralithium 1,4,5,8-naphthalenetetracarboxylate (LNTC) interwoven by carbon nanotubes (CNTs) forms LNTC@CNTs composite firstly for Li-ion storage, where multiple conjugated carboxyls contribute sufficient Li-ion storage sites, the unique network feature enables electrolyte and charge mobility conveniently combining electron delocalization in π-conjugated system, and the enhanced π-π superposition effect between LNTC and CNTs endows laudable structural robustness. Accordingly, LNTC@CNTs maintain an excellent Li-ion storage capacity retention of 96.4 % after 400 cycles. Electrochemical experiments and theoretical simulations elucidate the fast reaction kinetics and reversible Li-ion storage stability owing to the electron delocalization and π-π superposition effect, while conjugated carboxyls are reversibly rearranged into enolates during charging/discharging. Consequently, a dual-ion battery combining this composite anode and expanded graphite cathode exhibits a peak specific capacity of 122 mAh g-1 and long cycling life with a capacity retention of 84.2 % after 900 cycles.

18.
J Comput Aided Mol Des ; 38(1): 13, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38493240

RESUMEN

The growing size of make-on-demand chemical libraries is posing new challenges to cheminformatics. These ultra-large chemical libraries became too large for exhaustive enumeration. Using a combinatorial approach instead, the resource requirement scales approximately with the number of synthons instead of the number of molecules. This gives access to billions or trillions of compounds as so-called chemical spaces with moderate hardware and in a reasonable time frame. While extremely performant ligand-based 2D methods exist in this context, 3D methods still largely rely on exhaustive enumeration and therefore fail to apply. Here, we present SpaceGrow: a novel shape-based 3D approach for ligand-based virtual screening of billions of compounds within hours on a single CPU. Compared to a conventional superposition tool, SpaceGrow shows comparable pose reproduction capacity based on RMSD and superior ranking performance while being orders of magnitude faster. Result assessment of two differently sized subsets of the eXplore space reveals a higher probability of finding superior results in larger spaces highlighting the potential of searching in ultra-large spaces. Furthermore, the application of SpaceGrow in a drug discovery workflow was investigated in four examples involving G protein-coupled receptors (GPCRs) with the aim to identify compounds with similar binding capabilities and molecular novelty.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Ligandos , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas/métodos
19.
J Mech Behav Biomed Mater ; 152: 106434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350383

RESUMEN

The reliability of computational models in orthopedic biomechanics depends often on the accuracy of the bone material properties. It is widely recognized that the mechanical response of trabecular bone is time-dependent, yet it is often ignored for the sake of simplicity. Previous investigations into the viscoelastic properties of trabecular bone have not explored the relationship between nonlinear stress relaxation and bone mineral density. The inclusion of this behavior could enhance the accuracy of simulations of orthopedic interventions, such as of primary fixation of implants. Although methods to quantify the viscoelastic behavior are known, the time period during which the viscoelastic properties should be investigated to obtain reliable predictions is currently unclear. Therefore, this study aimed to: 1) Investigate the duration of stress relaxation in bovine trabecular bone; 2) construct a material model that describes the nonlinear viscoelastic behavior of uniaxial stress relaxation experiments on trabecular bone; and 3) implement bone density into this model. Uniaxial compressive stress relaxation experiments were performed with cylindrical bovine femoral trabecular bone samples (n = 16) with constant strain held for 24 h. Additionally, multiple stress relaxation experiments with four ascending strain levels with a holding time of 30 min, based on the results of the 24-h experiment, were executed on 18 bovine bone cores. The bone specimens used in this study had a mean diameter of 12.80 mm and a mean height of 28.70 mm. A Schapery and a Superposition model were used to capture the nonlinear stress relaxation behavior in terms of applied strain level and bone mineral density. While most stress relaxation happened in the first 10 min (up to 53 %) after initial compression, the stress relaxation continued even after 24 h. Up to 69 % of stress relaxation was observed at 24 h. Extrapolating the results of 30 min of experimental data to 24 h provided a good fit for accuracy with much improved experimental efficiency. The Schapery and Superposition model were both capable of fitting the repeated stress relaxation in a sample-by-sample approach. However, since bone mineral density did not influence the time-dependent behavior, only the Superposition model could be used for a group-based model fit. Although the sample-by-sample approach was more accurate for an individual specimen, the group based approach is considered a useful model for general application.


Asunto(s)
Densidad Ósea , Hueso Esponjoso , Bovinos , Animales , Reproducibilidad de los Resultados , Fenómenos Biomecánicos , Fémur
20.
Insects ; 15(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392541

RESUMEN

The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA