Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Environ Sci Technol ; 58(36): 16055-16065, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39205644

RESUMEN

Sunlight irradiation significantly mediates plant litter's carbon dynamics and volatile carbon release in semi-arid and arid ecosystems. In this process, carbon loss is controlled by lignin, but the mechanisms of production of CO2 and CH4 during lignin photolysis are ambiguous. In this study, the photomineralization of plant litter and the lignocellulosic component collectively indicate that lignin is a major source of CO2 and CH4 emissions. Characterization and free radical analysis reveal that the production of CO2 is due to the oxidation and ring-opening reaction of the coniferyl alcohol unit, with the subsequent decarboxylation of carboxylic acid as an oxidation product. This reaction involves o-quinone formation by the reactions between O2, superoxide radical (O2·-), and persistent free radicals (PFRs)-bearing lignin. Of this, O2·- contributes to 43.2% of the photogenerated CO2, as a new pathway, derived from the electron transfer from PFRs to O2. Interestingly, photoinduced demethylation of the dimethoxybenzene-type compounds as the photolysis products of lignin results in a never-before-reported CH4 formation chemical route independent of that of O2. This mechanistic insight into the role of lignin in volatile carbon production from the irradiative plant litter will contribute to a deeper understanding of carbon balance in water-limited ecosystems.


Asunto(s)
Dióxido de Carbono , Lignina , Metano , Fotólisis , Lignina/química , Dióxido de Carbono/química , Radicales Libres/química
2.
Small ; : e2405164, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180458

RESUMEN

Photodynamic therapy (PDT) is a promising cancer treatment, but limited oxygen supply in tumors (hypoxia) can hinder its effectiveness. This is because traditional PDT relies on Type-II reactions that require oxygen. Type-I photosensitizers (PSs) offer a promising approach to overcome the limitations of tumor photodynamic therapy (PDT) in hypoxic environments. To leverage the advantages of Type-I PDT, the design and evaluation of a series of Type-I PSs for developing pure Type-1 PSs, by incorporating benzene, thiophene, or bithiophene into the donor-acceptor molecular skeleton are reported. Among them, CTTI (with bithiophene) shows the best performance, generating the most superoxide radical (O2 •-) upon light irradiation. Importantly, CTTI exclusively produced superoxide radicals, avoiding the less effective Type-II pathway. This efficiency is due to CTTI's energy gap and low reduction potential, which favor electron transfer to oxygen for O2 •- generation. Finally, CTTI NPs are successfully fabricated by encapsulating CTTI into liposomes, and validated to be effective in killing tumor cells, even under hypoxic conditions, making them promising hypoxia-tolerant tumor phototheranostic agents in both in vitro and in vivo applications.

3.
Plant Physiol Biochem ; 214: 108886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950461

RESUMEN

Methyl viologen (MV), also known as paraquat, is a widely used herbicide but has also been reported as highly toxic to different life forms. The mode of its operation is related to superoxide radical (O2.-) production and consequent oxidative damage. However, besides the damage to key macromolecules, reactive oxygen species (ROS; to which O2.- belongs) are also known as regulators of numerous ion transport systems located at cellular membranes. In this study, we used MV as a tool to probe the role of O2.- in regulating membrane-transport activity and systemic acquired tolerance in halophytic Chenopodium quinoa and glycophytic spinach plants. Both plant species showed growth reduction in terms of reduced shoot length, lower shoot fresh and dry weight, photosynthesis rate, and chlorophyll contents; however, quinoa showed less reduction in growth compared with spinach. This whole plant response was further examined by measuring the ion concentration, gene expression of ion transporters, activation of antioxidants, and osmolyte accumulation. We observed that at the mechanistic level, the differences in growth in response to MV were conferred by at least four complementary physiological mechanisms: (1) higher K+ loss from spinach leaves resulted from higher expression of MV-induced plasma membrane-based depolarization-activated K+ efflux GORK channel, (2) higher activation of high-affinity K+ uptake transporter HAK5 in quinoa, (3) higher antioxidant production and osmolyte accumulation in quinoa as compared with spinach, and (4) maintaining a higher rate of photosynthesis due to higher chlorophyll contents, and efficiency of photosystem II and reduced ROS and MDA contents. Obtained results also showed that MV induced O2.- significantly reduced N contents in both species but with more pronounced effects in glycophytic spinach. Taken together this study has shown the role of O2.- in regulating membrane ion transport and N metabolism in the leaves of halophyte vs. glycophyte in the context of oxidative stress tolerance.


Asunto(s)
Chenopodium quinoa , Homeostasis , Oxidación-Reducción , Fotosíntesis , Potasio , Spinacia oleracea , Superóxidos , Chenopodium quinoa/metabolismo , Spinacia oleracea/metabolismo , Spinacia oleracea/efectos de los fármacos , Superóxidos/metabolismo , Potasio/metabolismo , Clorofila/metabolismo , Paraquat/farmacología , Hojas de la Planta/metabolismo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Water Res ; 261: 122023, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991243

RESUMEN

The roles of superoxide radical (O2•-) in the domains of physiological, physical, and material chemistry are becoming increasingly recognized. Although extensive efforts have been directed to understand O2•- functions in diverse aquatic systems, there is a lack of systematic and in-depth review for its kinetics and mechanisms in various environmental scenarios. This review aims to bridge this gap through discussion of O2•- generation pathways under both natural and controlled conditions. The merits and limitations of the generation and detection methods under various conditions are compared, with emphasis on different approaches for the determination of O2•--triggered reaction kinetics. We summarize the reaction rate constants of O2•- with organic contaminants covering a wide diversity of structures and reactivity. The comparison indicates that O2•- exhibits weak reactivity with most contaminants and lacks selectivity towards compounds with different functional groups, except with quinones which exhibit higher reactivity compared to non-quinones. Further, the reaction mechanisms, namely single electron transfer, nucleophilic substitution, hydrogen atom abstraction, and radical-adduct formation, are critically evaluated. Various environmental implications of O2•- are highlighted including maintenance of biogeochemical iron cycle, synthesis of nanoparticles for antibacterial purposes, desorption of contaminants from heterogeneous interfaces, and synergetic degradation of contaminants.


Asunto(s)
Superóxidos , Superóxidos/química , Cinética
5.
J Agric Food Chem ; 72(28): 16018-16031, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38960914

RESUMEN

Flow-injection spin-trapping electron paramagnetic resonance (FI-EPR) methods that involve the use of 5,5-dimethyl-pyrroline-N-oxide (DMPO) as a spin-trapping reagent have been developed for the kinetic study of the O2•- radical scavenging reactions occurring in the presence of various plant-derived and synthetic phenolic antioxidants (Aox), such as flavonoid, pyrogallol, catechol, hydroquinone, resorcinol, and phenol derivatives in aqueous media (pH 7.4 at 25 °C). The systematically estimated second-order rate constants (ks) of these phenolic compounds span a wide range (from 4.5 × 10 to 1.0 × 106 M-1 s-1). The semilogarithm plots presenting the relationship between ks values and oxidation peak potential (Ep) values of phenolic Aox are divided into three groups (A1, A2, and B). The ks-Ep plots of phenolic Aox bearing two or three OH moieties, such as pyrogallol, catechol, and hydroquinone derivatives, belonged to Groups A1 and A2. These molecules are potent O2•- radical scavengers with ks values above 3.8 × 104 (M-1 s-1). The ks-Ep plots of all phenol and resorcinol derivatives, and a few catechol and hydroquinone derivatives containing carboxyl groups adjacent to the OH groups, were categorized into the group poor scavengers (ks < 1.6 × 103 M-1 s-1). The ks values of each group correlated negatively with Ep values, supporting the hypothesis that the O2•- radical scavenging reaction proceeds via one-electron and two-proton processes. The processes were accompanied by the production of hydrogen peroxide at pH 7.4. Furthermore, the correlation between the plots of ks and the OH proton dissociation constant (pKa•) of the intermediate aroxyl radicals (ks-pKa• plots) revealed that the second proton transfer process could potentially be the rate-determining step of the O2•- radical scavenging reaction of phenolic compounds. The ks-Ep plots provide practical information to predict the O2•- radical scavenging activity of plant-derived phenolic compounds based on those molecular structures.


Asunto(s)
Depuradores de Radicales Libres , Oxidación-Reducción , Fenoles , Superóxidos , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Fenoles/química , Depuradores de Radicales Libres/química , Superóxidos/química , Detección de Spin
6.
Angew Chem Int Ed Engl ; : e202412977, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079914

RESUMEN

Perylene diimides (PDIs) have garnered considerable attention due to its immense potential in photocatalysis. However, manipulating the molecular packing within their aggregates and enhancing the efficiency of photogenerated carrier recombination remain significant challenges. In this study, we demonstrate the incorporation of a PDI unit into a covalent organic framework (COF), named PDI-PDA, by linking an ortho-substituted PDI with p-phenylenediamine (PDA) to control its intermolecular aggregation. The incorporation enables precise modulation of electron transfer dynamics, leading to a ten-fold increase in the efficiency of photocatalytic oxidation of thioether to sulfoxide with PDI-PDA compared to the PDI molecular counterpart, achieving yields exceeding 90%. Electron property studies and density functional theory calculations show that the PDI-PDA with its well-defined crystal structure, enhances π-π stacking and lowers the electron transition barrier. Moreover, the strong electron-withdrawing ability of the PDI unit promotes the spatial separation of the valency band maximum and conduction band minimum of PDI-PDA suppressing the rapid recombination of photogenerated electron-hole pairs and improving charge separation efficiency to give high photocatalytic efficiency. This study provides a brief yet effective way for the improvement of the photocatalytic efficiency of commonly used PDI-based dyes by integrating them into a framework skeleton.

7.
Environ Sci Technol ; 58(28): 12477-12487, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38943037

RESUMEN

Although the impacts of exotic wetland plant invasions on native biodiversity, landscape features, and carbon-nitrogen cycles are well appreciated, biogeochemical consequences posed by ecological competition, such as the heterogeneity of dissolved organic matter (DOM) from plant detritus and its impact on the formation of reactive oxygen species, are poorly understood. Thus, this study delves into O2•- photogeneration potential of DOM derived from three different parts (stem, leaf, and panicle) of invasive Spartina alterniflora (SA) and native Phragmites australis (PA). It is found that DOM from the leaves of SA and the panicles of PA has a superior ability to produce O2•-. With more stable aromatic structures and a higher proportion of sulfur-containing organic compounds, SA-derived DOM generally yields more O2•- than that derived from PA. UVA exposure enhances the leaching of diverse DOM molecules from plant detritus. Based on the reported monitoring data and our findings, the invasion of SA is estimated to approximately double the concentration of O2•- in the surrounding water bodies. This study can help to predict the underlying biogeochemical impacts from the perspective of aquatic photochemistry in future scenarios of plant invasion, seawater intrusion, wetland degradation, and elevated solar UV radiation.


Asunto(s)
Humedales , Superóxidos/metabolismo , Especies Introducidas , Plantas/metabolismo
8.
Cureus ; 16(5): e60163, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38868279

RESUMEN

Background This study aimed to isolate linear polysaccharides from Sepia prashadi cuttlebone with the objective of evaluating their ability to scavenge free radicals. By providing new natural components for pharmaceutical and functional food uses, this research advances our understanding of the potential health benefits of polysaccharides originating from marine sources and their antioxidant properties. Objective The objective of the study is to isolate a linear polysaccharide chitosan from Sepia prashadi cuttlebone (produced by the partial deacetylation of chitin), characterize its structure using fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), and explore the isolated polysaccharide's free radical scavenging potential. Material and methods Linear polysaccharide, chitosan was extracted chemically from Sepia prashadi from cuttlebone waste, by demineralization and deproteinization.Chemical characterization of chitosan was performed using Fourier transform infrared spectroscopy (FTIR) in the 400-4000 nm frequency range. The surface characteristics of chitosan, such as its texture, porosity, and roughness, are visible in scanning electron microscopy (SEM) images. X-ray diffraction (XRD) can be utilized to examine how chitosan interacts with other substances, such as medications or nanoparticles, by analyzing alterations in the diffraction pattern during complexation or formulation. Scavenging ability was demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide radical, and chelating ability of ferrous ions assays. Results  Chitosan is formed from chitin. The extraction yields of chitosan and chitin were 78% and 39%, respectively. High levels of superoxide radical scavenging activity (76.1%), DPPH radical scavenging activity (62.1%) and chelating activity (127.5% at 100 g/mL) were observed in cuttlebone chitosan. Sepia prashadi showed an increased antioxidant activity in chitosan. Conclusion The goal of this study was to determine the effectiveness of various extraction techniques for preserving the antioxidant activity of chitosan derived from Sepia prashadi cuttlebone waste. The maximum scavenging activity was demonstrated by both the chelating ability and antioxidant activity. Considering that this raw material is derived from renewable resources and produces highly valued chemicals, it is a profitable endeavor.

9.
Protein Pept Lett ; 31(5): 375-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840406

RESUMEN

BACKGROUND: We studied UPBEAT1 (UPB1) which regulated superoxide radical / hydrogen peroxide ratio together with peroxidase (POD) activity and PAL genes expression under different ways of apical meristem development during the xylem structural elements' formation in unique woody plants B. pendula var. pendula with straight-grained wood and B. pendula var. carelica with figured wood. The differentiation process predominanced in straight-grained wood (B. pendula var. pendula) or proliferation - in the figured wood. The investigation was conducted in the radial row (cambial zone - differentiating xylem - mature xylem) during the active cambial growth period. OBJECTIVE: The study aimed to study the xylogenesis processes occurring in the 16-year-old straight-grained silver birch (Betula pendula Roth) and Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti) with figured wood. METHODS: Hydrogen peroxide and superoxide radical contents and peroxidase activity were determined spectrophotometrically. Gene expression for PAL family genes and the UPBEAT1 gene was assessed using qRT-PCR. RESULTS: Principal component analysis has confirmed trees with straight-grained and figured wood to be different according to UPBEAT1-ROS-POD-PAL system functioning. CONCLUSION: The higher superoxide radical/hydrogen peroxide ratio in figured Karelian birch, along with UPBEAT1 transcription factor and PAL genes upregulation, distinguished it from straight-grained silver birch. This metabolic picture confirmed the shift of Karelian birch xylogenesis towards proliferation processes, accompanied by ROS and phenolic compounds' flow and POD activity.


Asunto(s)
Betula , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Xilema , Betula/genética , Betula/crecimiento & desarrollo , Betula/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peroxidasa/metabolismo , Peroxidasa/genética , Superóxidos/metabolismo , Madera/metabolismo , Madera/crecimiento & desarrollo , Madera/genética
10.
Chempluschem ; 89(8): e202400174, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38771069

RESUMEN

Carbon dots (CDs) obtained from 5-(hydroxymethyl)furfural (5-HMF) were activated by a 365 nm-UV irradiation source and employed in the Knoevenagel condensation to investigate their photocatalytic mechanism. To this end, electrospray ionization mass spectrometry (ESI-MS) was used to monitor the time progress of the condensation and follow the formation of the final product in positive and negative ion modes at once. The intervention of the superoxide radical anion in the photocatalytic mechanism of CDs was highlighted.

11.
Water Res ; 258: 121813, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820991

RESUMEN

Ferromanganese oxide (MFOx) was first utilized to functionalize TiO2 and an MFOx@TiO2 catalyst was developed for catalytic ozonation for rapid attack of pharmaceutical and personal care products (PPCPs) with adjusted reactive oxygen species (ROSs) composition and strengthened ROSs generation. Unlike Al2O3, which strongly relied on adsorption and was significantly influenced by MFOx loading, synergistic catalytical effects of MFOx and TiO2 were observed, and optimal MFOx doping of 2 wt% and MFOx@TiO2 dosage of 500 ppm were obtained for catalyzing ozonation. In ibuprofen (IBP) degradation, MFOx@TiO2-catalyzed ozonation (MFOx@TiO2/O3) obtained 2.0-, 4.7- and 6.9-folds the kobs of TiO2/O3, MFOx/O3 and bare ozonation (B/O3). Stronger O3 decomposition was observed by MFOx@TiO2 over bare TiO2 with the participation of redox pairs Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) and increased surface oxygen vacancies (SOVs) from 9.8 % to 33.7 % was detected. The results revealed that Fe(II), Mn(II) and Mn(III) with low valance accelerated Ti(III) generation from Ti(VI), obtaining an unprecedented high Ti(III) composition occupying 35.3 % of the total Ti atoms. Ti(III) catalyzed the direct reduction of SOVs-O2 to •O2-, and it accelerated the formation of Ti(VI)-OH and Ti(VI)-O which catalyzed O3 decomposition into •O2-. •O2- was found to primarily initiate IBP degradation with nucleophilic addition and dominated over 66 % IBP removal. The enhanced •O2- generation further strengthened •OH and 1O2 production. MFOx@TiO2/O3 obtained 17 %, 21 % and 30 % higher TOC removal over TiO2/O3, MFOx/O3 and B/O3, respectively. Acute toxicity tests confirmed the effective toxicity control of organics by MFOx@TiO2/O3 process (inhibition rate: 10.9 %). Degradation test of atenolol and sulfamethoxazole confirmed the catalytic effects of MFOx@TiO2. MFOx@TiO2 performed strong resistance to water matrix in application test and showed good stability and reusability. The study proposed an effective catalyst for strengthening the ozonation process on PPCPs degradation and provided an in-depth understanding of the mechanisms and characteristics of the MFOx@TiO2 catalyst and MFOx@TiO2/O3 process.


Asunto(s)
Oxidación-Reducción , Ozono , Especies Reactivas de Oxígeno , Titanio , Contaminantes Químicos del Agua , Ozono/química , Catálisis , Titanio/química , Especies Reactivas de Oxígeno/química , Contaminantes Químicos del Agua/química , Óxidos/química
12.
Aquat Toxicol ; 271: 106928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688065

RESUMEN

The significant role of aquatic phytoplankton in global primary productivity, accounting for approximately 50 % on an annual basis, has been recognized as a crucial factor in the reduction of Hg(II). In this study, we compared the efficiency of Hg(II) photoreduction mediated by three types of algae leaching dissolved organic matter (DOM) and humic acid (DOM-HA). Especially, we investigated the potential effects of algae-leached DOM on the photoreduction of Hg(II) and its subsequent uptake by lettuce, which serves as an indicator of Hg bioavailability for aquatic plants. The results revealed that under light conditions, the conversion of Hg(II) to Hg(0) mediated by algae-leached DOM and DOM-HA was 6.4-39.9 % higher compared to dark condition. Furthermore, the free radical quenching experiment demonstrated that the reduction of Hg(II) mediated by DOM-HA was higher than algae-leached DOM, mainly due to its ability to generate superoxide anion (O2•-). Moreover, the photoreduction efficiences of Hg(II) mediated by algae-leached DOM were 29-18 % lower compared to DOM-HA. The FT-IR analysis revealed that the production of -SH from algae-leached DOM led to the formation of strong metal-complexes, which restricts the reduction process from Hg(II) to Hg(0). Finally, the hydroponics experiment demonstrated that algae-leached DOM inhibited the bioavailability of Hg(II) to plants more effectively than DOM-HA. Our research emphasizes the significant functional roles and potential mechanisms of algae in reducing Hg levels, thereby influencing the availability of Hg in aquatic ecosystems.


Asunto(s)
Sustancias Húmicas , Lactuca , Luz , Mercurio , Contaminantes Químicos del Agua , Lactuca/metabolismo , Lactuca/efectos de la radiación , Oxidación-Reducción
13.
Environ Res ; 251(Pt 2): 118747, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38527717

RESUMEN

A composite material, cow dung-doped sludge biochar (Zn@SBC-CD), was synthesized by one-step pyrolysis using ZnCl2 as an activating agent and applied to a catalytic ozonation process (COP) for methylene blue (MB) removal. SEM, XRD, FTIR, XPS and BET analyses were performed to characterize the biochar (BC) catalysts. Zn@SBC-CD had high graphitization degree, abundant active sites and uniform distribution of Zn on its surface. Complete removal of MB was achieved within 10 min, with a removal rate much higher than that of ozone alone (32.4%), implying the excellent ozone activation performance of Zn@SBC-CD. The influence of experimental parameters on MB removal efficiency was examined. Under the optimum conditions in terms of ozone dose 0.04 mg/mL, catalyst dose 400 mg/L and pH 6.0, COD was completely removed after 20 min. Electron paramagnetic resonance (EPR) analysis revealed radical and non-radical pathways were involved in MB degradation. The Zn@SBC-CD/O3 system generated superoxide anion radicals (•O2-), which were the main active species for MB removal, through adsorption, transformation, and transfer, Furthermore, Zn@SBC-CD exhibited good reusability and stability in cycling experiments. This study provides a novel approach for the utilization of cow dung and sludge in synthesis of functional biocatalysts and application in organic wastewater treatment.


Asunto(s)
Carbón Orgánico , Grafito , Ozono , Ozono/química , Carbón Orgánico/química , Animales , Bovinos , Catálisis , Grafito/química , Aguas del Alcantarillado/química , Azul de Metileno/química , Radicales Libres/química , Contaminantes Químicos del Agua/química , Estiércol/análisis
14.
ACS Appl Mater Interfaces ; 16(12): 15133-15142, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488729

RESUMEN

Dynamic control of ultralong organic room-temperature phosphorescence (UORTP) is a charming target. Herein, we report a stimuli-responsive phosphorescence unit 7H-indolo[2,3-c]quinoline (NBCz) and its derivatives (PCBNBCz, FSO2NBCz, and N2BCzSO2NBCz) that show photo- and oxygen- synergistically induced afterglow activation and afterglow color change in the PMMA film. PCBNBCz and FSO2NBCz feature a donor-acceptor (D-A) structure, and N2BCzSO2NBCz features acceptor-bridged two different phosphorescence units (NBCz and N2BCz). The photoactivated UORTP of PCBNBCz and FSO2NBCz arises from the photoinduced consumption of oxygen in the PMMA film. It is clear that the phosphorescence unit NBCz contributes to subsequent photoinduced UORTP color change because the NBCz-doped PMMA film shows the same UORTP color change process. ESR and HRMS measurements confirmed that oxidation of NBCz occurs at the nitrogen atom of the quinoline ring via photogenerated superoxide radicals, which results in the UORTP color change. TDDFT calculations proved that after oxidation of NBCz, the T1 energy level declines significantly. Furthermore, photocontrolled selective expression of phosphorescence units is achieved in the case of N2BCzSO2NBCz. After further UV irradiation, oxidation of NBCz happened, and the oxidized form N2BCzSO2NBCz-O emitted the intrinsic orange UORTP of NBCz-O selectively and screened the intrinsic yellowish-green UORTP of N2BCz. Finally, multilevel photolithography can be demonstrated based on the photoactivated UORTP and the photoinduced UORTP color change. This work may give a deep insight into organic phosphorescence and pave a simple way for the development of stimulus-responsive smart UORTP materials.

15.
Bioresour Technol ; 397: 130452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354963

RESUMEN

This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BN3Z0.5BC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BN3Z0.5BC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.


Asunto(s)
Carbón Orgánico , Ácido Peracético , Contaminantes Químicos del Agua , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Radicales Libres , Antibacterianos
16.
Angew Chem Int Ed Engl ; 63(14): e202319216, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337143

RESUMEN

The synthesis of hydrogen peroxide through artificial photosynthesis is a green and promising technology with advantages in sustainability, economy and safety. However, superoxide radical (⋅O2 -), an important intermediate in photocatalytic oxygen reduction to H2O2 production, has strong oxidizing properties that potentially destabilize the catalyst. Therefore, avoiding the accumulation of ⋅O2 - for its rapid conversion to H2O2 is of paramount significance in improving catalyst stability and H2O2 yield. In this work, a strategy was developed to utilize protonated groups for the rapid depletion of converted ⋅O2 -, thereby the efficiency of photocatalytic synthesis of H2O2 from CN was successfully enhanced by 47-fold. The experimental findings demonstrated that polydopamine not only improved carrier separation efficiency, and more importantly, provided the adsorption reduction active site for ⋅O2 - for efficient H2O2 production. This work offers a versatile approach for synthesizing efficient and stable photocatalysts.

17.
J Ethnopharmacol ; 323: 117671, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38163555

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Snake bites are a critical health issue in many parts of the world particularly in Asian countries lacking efficient health facilities in rural areas. Cobra is the most common snake type in Asia and is responsible for a large number of mortalities particularly in rural areas. Plants are usually considered the most effective and easy-to-approach treatment for snake bites in rural areas of various countries. Vitex negundo L. is an important medicinal plant traditionally used to treat snake bite envenomation in many countries of Asia. AIM OF THE STUDY: From literature survey of plants traditionally used in the treatment of snake bites in Asian countries including India, Pakistan and Sri Lanka, roots of V. negundo were selected for the present study. Anti-snake venom potential of its roots was assessed through various in vitro assays targeting the phospholipase A2 enzyme. MATERIALS AND METHODS: V. negundo roots were sequentially extracted in different organic solvents to get fractions and in methanol to get total extract. The extracts were evaluated for phospholipase A2 (PLA2) inhibitory potential through inhibition of venom-induced hemolysis, ADP-induced platelet aggregation, PLA2-induced fatty acid hydrolysis and anticoagulant effect of cobra venom. Antioxidant power was determined using DPPH and superoxide radical scavenging assays. GC-MS and HPLC analysis was performed for the total methanol extract. RESULTS: Strong PLA2 inhibitory effect was observed for all the extracts. The ethyl acetate, acetone and methanol fractions significantly inhibited toxic effects of cobra venom under in vitro conditions. Radical scavenging potential of these fractions was also significantly high as compared to non-polar fractions in both DPPH and superoxide scavenging assays. Phytochemical analysis indicated high phenolic and flavonoid contents in these fractions. GC-MS and HPLC analysis of total methanol extract confirmed the presence of bis(2-ethylhexyl) phthalate, phenol, o-Guaiacol, palmitic acid-methyl ester, methyl stearate, quercetin and kaempferol in the plant. CONCLUSION: The study concluded that the roots of V. negundo, particularly their polar extracts, have strong PLA2 inhibitory effect against cobra venom confirming their traditional use to manage snake bites. The roots of this plant can be further studied for isolation of plant-based antisera.


Asunto(s)
Mordeduras de Serpientes , Vitex , Humanos , Mordeduras de Serpientes/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Metanol/uso terapéutico , Antivenenos/farmacología , Venenos Elapídicos , Fosfolipasas A2 , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fosfolipasas , Pakistán
18.
Sci Total Environ ; 912: 168833, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036120

RESUMEN

Bone char is a functional material obtained by calcining animal bones and is widely used for environmental remediation. In this work, iron was inserted into porcine bone-derived bone char via ion exchange to synthesize iron-doped bone char (Fe-BC) for efficient catalysis of hydrogen peroxide. This is the first time that Fe-BC has been used as a catalyst for the activation of H2O2. The effectiveness of the Fe-BC catalyst was influenced by the annealing temperature and the amount of iron doping. The results showed that the activation of H2O2 by the Fe-BC catalyst with the best catalytic performance could achieve 97.6% of APAP degradation within 30 min. Insights from electron paramagnetic resonance (EPR), free radical scavenging experiments and linear sweep voltammetry (LSV) proposed a reaction mechanism based on free radicals dominated degradation pathways (OH and O2-). Iron served as the primary active site in Fe-BC, with defect sites and oxygen-containing groups in the catalyst also contributing to the removal of pollutants. The Fe-BC/H2O2 system demonstrated resilience to interference from common anions (Cl-, NO3-, SO42- and HCO3-) in water, but was less effective against humic acid (HA). Based on the detection of intermediates produced during APAP degradation, possible degradation pathways of APAP were proposed and the toxicity of intermediates was evaluated. This work provides fresh insights into the use of heterogeneous Fenton catalysts for the removal of organic pollutants from water.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Porcinos , Peróxido de Hidrógeno/química , Hierro/química , Acetaminofén , Agua , Oxígeno , Contaminantes Químicos del Agua/análisis , Catálisis , Oxidación-Reducción
19.
Chemistry ; 30(12): e202303725, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38032028

RESUMEN

The design and synthesis of metal-organic frameworks (MOFs) as photocatalytic molecular reactors for varied reactions have drawn great attention. In this work, we designed a novel photoactive perylenediimides-based (PDI) carboxylate ligand N,N'-di(3',3",5',5"-tetrakis(4-carboxyphenyl))-1,2,6,7-tetrachloroperylene-3,4,9,10-tetracarboxylic acid diimide (Cl-PDI-TA) and use it to successfully synthesize a novel Zr(IV)-based MOF 1 constructed from [Zr6 O8 (H2 O)8 ]8+ clusters bridged by Cl-PDI-TA ligands. Structural analysis revealed that Zr-MOF 1 manifests a 3D framework with (4,8)-connected csq topology and possesses triangular channels of ~17 Šand mesoporous hexagonal channels of ~26 Šalong c-axis. Moreover, the synthesized Zr-MOF 1 exhibits visible-light absorption and efficient photoinduced free radical generation property, making it a promising photocatalytic molecular reactor. When Zr-MOF 1 was used as a photocatalyst for the aerobic oxidation of sulfides under irradiation of visible light, it could afford the corresponding sulfoxides with high yield and selectivity. Experimental results demonstrated that the substrate sulfides could be fixed in the pores of 1 and directly transformed to the products sulfoxides in the solid state. Furthermore, the mechanism for the photocatalytic transformation was also investigated and the results revealed that the singlet oxygen (1 O2 ) and superoxide radical (O2 ⋅- ) generated by the energy transfer and electron transfer from the photoexcited Zr-MOF to oxidants were the main active species for the catalytic reactions. This work offers a perceptive comprehension of the mechanism in PDI-based MOFs for further study on photocatalytic reactions.

20.
Adv Healthc Mater ; 13(20): e2303183, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38117062

RESUMEN

Due to the "Achilles' heels" of hypoxia, complicated location in solid tumor, small molecular photosensitizers with second near-infrared window (NIR-II) fluorescence, type-I photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted great attention. However, these photosensitizers are still few but yet challenging. Herein, an "all in one" NIR-II acceptor-donor-acceptor fused-ring photosensitizer, Y6-Th, is presented for the in-depth diagnosis and efficient treatment of cancer. Benefiting from the strong intramolecular charge transfer, promoted highly efficient intersystem crossing, largely p-conjugated fused-ring structure, and reduced planarity, the fabricated nanoparticles (Y6-Th nanoparticles) can emit NIR-II fluorescence with the peak located at 1020 nm, exclusively generate O2•- for type-I PDT, and display excellent PTT performance under an 808 nm laser stimulation. These characteristics make Y6-Th a distinguished NIR-wavelength-triggered phototheranostic agent, which can effectively therapy the hypoxic tumor using NIR-II-fluorescence-guided type-I PDT/PTT. This work provides a valuable guideline for fabricating high-performing NIR-II emissive superoxide radical photogenerators.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Superóxidos , Fotoquimioterapia/métodos , Superóxidos/metabolismo , Superóxidos/química , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Humanos , Nanopartículas/química , Terapia Fototérmica/métodos , Línea Celular Tumoral , Rayos Infrarrojos , Ratones Endogámicos BALB C , Femenino , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Hipoxia Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA