Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39204556

RESUMEN

Mechanical stress governs the dynamics of viscoelastic polymer systems and supercooled glass-forming fluids. It was recently established that liquids with long terminal relaxation times are characterized by transiently frozen stress fields, which, moreover, exhibit long-range correlations contributing to the dynamically heterogeneous nature of such systems. Recent studies show that stress correlations and relaxation elastic moduli are intimately related in isotropic viscoelastic systems. However, the origin of these relations (involving spatially resolved material relaxation functions) is non-trivial: some relations are based on the fluctuation-dissipation theorem (FDT), while others involve approximations. Generalizing our recent results on 2D systems, we here rigorously derive three exact FDT relations (already established in our recent investigations and, partially, in classical studies) between spatio-temporal stress correlations and generalized relaxation moduli, and a couple of new exact relations. We also derive several new approximate relations valid in the hydrodynamic regime, taking into account the effects of thermal conductivity and composition fluctuations for arbitrary space dimension. One approximate relation was heuristically obtained in our previous studies and verified using our extended simulation data on two-dimensional (2D) glass-forming systems. As a result, we provide the means to obtain, in any spatial dimension, all stress-correlation functions in terms of relaxation moduli and vice versa. The new approximate relations are tested using simulation data on 2D systems of polydisperse Lennard-Jones particles.

2.
Materials (Basel) ; 17(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063865

RESUMEN

This is an overview of recent findings on the structural changes observed upon heating, including crystallization processes in conventional metallic glasses, bulk metallic glasses, and their corresponding supercooled liquids. This paper encapsulates the various crystallization behaviors in metallic glasses by primary, eutectic, and polymorphous mechanisms, highlighting the complexity and diversity of the nucleation and growth mechanisms involved. Mechanically induced room-temperature crystallization is also discussed.

3.
Proc Natl Acad Sci U S A ; 121(23): e2322592121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805280

RESUMEN

In supercooled liquids, dynamical facilitation refers to a phenomenon where microscopic motion begets further motion nearby, resulting in spatially heterogeneous dynamics. This is central to the glassy relaxation dynamics of such liquids, which show super-Arrhenius growth of relaxation timescales with decreasing temperature. Despite the importance of dynamical facilitation, there is no theoretical understanding of how facilitation emerges and impacts relaxation dynamics. Here, we present a theory that explains the microscopic origins of dynamical facilitation. We show that dynamics proceeds by localized bond-exchange events, also known as excitations, resulting in the accumulation of elastic stresses with which new excitations can interact. At low temperatures, these elastic interactions dominate and facilitate the creation of new excitations near prior excitations. Using the theory of linear elasticity and Markov processes, we simulate a model, which reproduces multiple aspects of glassy dynamics observed in experiments and molecular simulations, including the stretched exponential decay of relaxation functions, the super-Arrhenius behavior of relaxation timescales as well as their two-dimensional finite-size effects. The model also predicts the subdiffusive behavior of the mean squared displacement (MSD) on short, intermediate timescales. Furthermore, we derive the phonon contributions to diffusion and relaxation, which when combined with the excitation contributions produce the two-step relaxation processes, and the ballistic-subdiffusive-diffusive crossover MSD behaviors commonly found in supercooled liquids.

4.
Entropy (Basel) ; 26(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38539753

RESUMEN

On approaching the dynamical transition temperature, supercooled liquids show heterogeneity over space and time. Static replica theory investigates the dynamical crossover in terms of the free energy landscape (FEL). Two kinds of static approaches have provided a self-consistent equation for determining this crossover, similar to the mode coupling theory for glassy dynamics. One uses the Morita-Hiroike formalism of the liquid state theory, whereas the other relies on the density functional theory (DFT). Each of the two approaches has advantages in terms of perturbative field theory. Here, we develop a replica field theory that has the benefits from both formulations. We introduce the generalized Franz-Parisi potential to formulate a correlation functional. Considering fluctuations around an inhomogeneous density determined by the Ramakrishnan-Yussouf DFT, we find a new closure as the stability condition of the correlation functional. The closure leads to the self-consistent equation involving the triplet direct correlation function. The present field theory further helps us study the FEL beyond the mean-field approximation.

5.
Ultramicroscopy ; 256: 113886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000289

RESUMEN

Electron correlation microscopy (ECM) characterizes local structural relaxation dynamics in fluctuating systems like supercooled liquids with nanometer spatial resolution. We have developed a new type of ECM technique that provides moderate resolution in momentum transfer or k space using five-dimensional scanning transmission electron microscopy. k-resolved ECM on a Pt57.5Cu14.7Ni5.3P22.5 metallic supercooled liquids measures rich spatial and momentum structure in the relaxation time data τ(r,k). Relaxation time maps τ(r) at each azimuthal k are independent samples of the material's underlying relaxation time distribution, and τ of radial k shows more complex behavior than the de Gennes narrowing observed in analogous X-ray experiments. We have determined the requirements for electron counts per k-pixel, number of k-pixels per speckle, and time sampling to obtain reliable k-resolved ECM data.

6.
J Phys Condens Matter ; 35(46)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37531967

RESUMEN

A computational approach by an implementation of the principle component analysis (PCA) withK-means and Gaussian mixture (GM) clustering methods from machine learning algorithms to identify structural and dynamical heterogeneities of supercooled liquids is developed. In this method, a collection of the average weighted coordination numbers (WCNs‾) of particles calculated from particles' positions are used as an order parameter to build a low-dimensional representation of feature (structural) space forK-means clustering to sort the particles in the system into few meso-states using PCA. Nano-domains or aggregated clusters are also formed in configurational (real) space from a direct mapping using associated meso-states' particle identities with some misclassified interfacial particles. These classification uncertainties can be improved by a co-learning strategy which utilizes the probabilistic GM clustering and the information transfer between the structural space and configurational space iteratively until convergence. A final classification of meso-states in structural space and domains in configurational space are stable over long times and measured to have dynamical heterogeneities. Armed with such a classification protocol, various studies over the thermodynamic and dynamical properties of these domains indicate that the observed heterogeneity is the result of liquid-liquid phase separation after quenching to a supercooled state.

7.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175578

RESUMEN

Recent works show that glass-forming liquids display Fickian non-Gaussian Diffusion, with non-Gaussian displacement distributions persisting even at very long times, when linearity in the mean square displacement (Fickianity) has already been attained. Such non-Gaussian deviations temporarily exhibit distinctive exponential tails, with a decay length λ growing in time as a power-law. We herein carefully examine data from four different glass-forming systems with isotropic interactions, both in two and three dimensions, namely, three numerical models of molecular liquids and one experimentally investigated colloidal suspension. Drawing on the identification of a proper time range for reliable exponential fits, we find that a scaling law λ(t)∝tα, with α≃1/3, holds for all considered systems, independently from dimensionality. We further show that, for each system, data at different temperatures/concentration can be collapsed onto a master-curve, identifying a characteristic time for the disappearance of exponential tails and the recovery of Gaussianity. We find that such characteristic time is always related through a power-law to the onset time of Fickianity. The present findings suggest that FnGD in glass-formers may be characterized by a "universal" evolution of the distribution tails, independent from system dimensionality, at least for liquids with isotropic potential.


Asunto(s)
Vidrio , Difusión , Distribución Normal
8.
Proc Natl Acad Sci U S A ; 120(19): e2300923120, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126696

RESUMEN

The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is surprisingly rich and plays a critical role in numerous physical, biological, and industrial processes. However, approaches to uncover this structure are either system-specific or yield results that are not physically intuitive. Here, through single-particle resolved three-dimensional confocal microscope imaging and the use of a recently introduced four-point correlation function, we show that bidisperse colloidal liquids have a highly nontrivial structure comprising alternating layers with icosahedral and dodecahedral order, which extends well beyond nearest-neighbor distances and grows with supercooling. By quantifying the dynamics of the system on the particle level, we establish that it is this intermediate-range order, and not the short-range order, which has a one-to-one correlation with dynamical heterogeneities, a property directly related to the relaxation dynamics of glassy liquids. Our experimental findings provide a direct and much sought-after link between the structure and dynamics of liquids and pave the way for probing the consequences of this intermediate-range order in other liquid state processes.

9.
Entropy (Basel) ; 24(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010765

RESUMEN

Understanding the microscopic mechanism of the transition of glass remains one of the most challenging topics in Condensed Matter Physics. What controls the sharp slowing down of molecular motion upon approaching the glass transition temperature Tg, whether there is an underlying thermodynamic transition at some finite temperature below Tg, what the role of cooperativity and heterogeneity are, and many other questions continue to be topics of active discussions. This review focuses on the mechanisms that control the steepness of the temperature dependence of structural relaxation (fragility) in glass-forming liquids. We present a brief overview of the basic theoretical models and their experimental tests, analyzing their predictions for fragility and emphasizing the successes and failures of the models. Special attention is focused on the connection of fast dynamics on picosecond time scales to the behavior of structural relaxation on much longer time scales. A separate section discusses the specific case of polymeric glass-forming liquids, which usually have extremely high fragility. We emphasize the apparent difference between the glass transitions in polymers and small molecules. We also discuss the possible role of quantum effects in the glass transition of light molecules and highlight the recent discovery of the unusually low fragility of water. At the end, we formulate the major challenges and questions remaining in this field.

10.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562937

RESUMEN

In this paper, we show that a simple anisotropic model of supercooled liquid properly reflects some density scaling properties observed for experimental data, contrary to many previous results obtained from isotropic models. We employ a well-known Gay-Berne model earlier parametrized to achieve a supercooling and glass transition at zero pressure to find the point of glass transition and explore volumetric and dynamic properties in the supercooled liquid state at elevated pressure. We focus on dynamic scaling properties of the anisotropic model of supercooled liquid to gain a better insight into the grounds for the density scaling idea that bears hallmarks of universality, as follows from plenty of experimental data collected near the glass transition for different dynamic quantities. As a result, the most appropriate values of the scaling exponent γ are established as invariants for a given anisotropy aspect ratio to successfully scale both the translational and rotational relaxation times considered as single variable functions of densityγ/temperature. These scaling exponent values are determined based on the density scaling criterion and differ from those obtained in other ways, such as the virial-potential energy correlation and the equation of state derived from the effective short-range intermolecular potential, which is qualitatively in accordance with the results yielded from experimental data analyses. Our findings strongly suggest that there is a deep need to employ anisotropic models in the study of glass transition and supercooled liquids instead of the isotropic ones very commonly exploited in molecular dynamics simulations of supercooled liquids over the last decades.


Asunto(s)
Simulación de Dinámica Molecular , Vitrificación , Anisotropía , Temperatura
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169078

RESUMEN

We study the instantaneous normal mode (INM) spectrum of a simulated soft-sphere liquid at different equilibrium temperatures T We find that the spectrum of eigenvalues [Formula: see text] has a sharp maximum near (but not at) [Formula: see text] and decreases monotonically with [Formula: see text] on both the stable and unstable sides of the spectrum. The spectral shape strongly depends on temperature. It is rather asymmetric at low temperatures (close to the dynamical critical temperature) and becomes symmetric at high temperatures. To explain these findings we present a mean-field theory for [Formula: see text], which is based on a heterogeneous elasticity model, in which the local shear moduli exhibit spatial fluctuations, including negative values. We find good agreement between the simulation data and the model calculations, done with the help of the self-consistent Born approximation (SCBA), when we take the variance of the fluctuations to be proportional to the temperature T More importantly, we find an empirical correlation of the positions of the maxima of [Formula: see text] with the low-frequency exponent of the density of the vibrational modes of the glasses obtained by quenching to [Formula: see text] from the temperature T We discuss the present findings in connection to the liquid to glass transformation and its precursor phenomena.

12.
PNAS Nexus ; 1(4): pgac204, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36714873

RESUMEN

The existence of a phase transition between two distinct liquid phases in single-component network-forming liquids (e.g. water, silica, silicon) has elicited considerable scientific interest. The challenge, both for experiments and simulations, is that the liquid-liquid phase transition (LLPT) occurs under deeply supercooled conditions, where crystallization occurs very rapidly. Thus, early evidence from numerical equation of state studies was challenged with the argument that slow spontaneous crystallization had been misinterpreted as evidence of a second liquid state. Rigorous free-energy calculations have subsequently confirmed the existence of a LLPT in some models of water, and exciting new experimental evidence has since supported these computational results. Similar results have so far not been found for silicon. Here, we present results from free-energy calculations performed for silicon modeled with the classical, empirical Stillinger-Weber-potential. Through a careful study employing state-of-the-art constrained simulation protocols and numerous checks for thermodynamic consistency, we find that there are two distinct metastable liquid states and a phase transition. Our results resolve a long-standing debate concerning the existence of a liquid-liquid transition in supercooled liquid silicon and address key questions regarding the nature of the phase transition and the associated critical point.

14.
Polymers (Basel) ; 13(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34641239

RESUMEN

The non-Arrhenius behavior of segmental dynamics in glass-forming liquids is one of the most profound mysteries in soft matter physics. In this article, we propose a dynamically correlated network (DCN) model to understand the growing behavior of dynamically correlated regions during cooling, which leads to the viscous slowdown of supercooled liquids. The fundamental concept of the model is that the cooperative region of collective motions has a network structure that consists of string-like parts, and networks of various sizes interpenetrate each other. Each segment undergoes dynamical coupling with its neighboring segments via a finite binding energy. Monte Carlo simulations showed that the fractal dimension of the DCNs generated at different temperatures increased and their size distribution became broader with decreasing temperature. The segmental relaxation time was evaluated based on a power law with four different exponents for the activation energy of rearrangement with respect to the DCN size. The results of the present DCN model are consistent with the experimental results for various materials of molecular and polymeric liquids.

15.
J Phys Condens Matter ; 33(38)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34198283

RESUMEN

In contrast to the static dielectric permittivity,ε, associated with linear response, its high-field counterpart,εE, is not a material specific quantity, but rather depends on the experimental method used to determine the nonlinear dielectric effect (NDE). Here, we defineεEin a manner consistent with how high field permittivities are typically derived from a capacitance measurement using high voltages. Based upon characterizing the materials nonlinear behavior via its third order susceptibility,χ3, the relations between a givenχ3and the observableεEis calculated for six different experimental or theoretical approaches to NDEs in the static limit. It is argued that the quantityχ3is superior overεEor the Piekara factor, (εE-ε)/E2, because it facilitates an unambiguous comparison among different experimental techniques and it provides a more robust connection between experiment and theory.

16.
Artículo en Inglés | MEDLINE | ID: mdl-33326937

RESUMEN

We report results from the molecular dynamics simulations of a binary colloidal mixture subjected to an external potential barrier along one of the spatial directions at low volume fraction, $\phi=$ 0.2. The variations in the asymmetry of the external potential barrier do not change the dynamics of the smaller particles, showing Arrhenius diffusion. However, the dynamics of the larger particles shows a crossover from sub-Arrhenius to super-Arrhenius diffusion with the asymmetry in the external potential at the low temperatures and low volume fraction. Super-Arrhenius diffusion is generally observed in the high density systems where the transient cages are present due to dense packing, e.g., supercooled liquids, jammed systems, diffusion through porous membranes, dynamics within the cellular environment, etc. This model can be applied to study the molecular transport across cell membranes, nano-, and micro-channels which are characterised by spatially asymmetric potentials.

17.
Eur Phys J E Soft Matter ; 43(12): 75, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33306156

RESUMEN

The existence of amorphous packings in two-dimensional monodisperse system is a classical unsolved problem. We get the energy minimum state by the energy minimization method of enthalpy under constant pressure conditions. Firstly, we find that there are two peaks in the experiment, which demonstrate the interesting features of the coexistence of crystals and amorphous crystals. And then, we confirm the critical point of jamming transition of the two-dimensional monodisperse is [Formula: see text]. Finally, we prove that the jamming scaling is still satisfied in two-dimensional monodispersed system: [Formula: see text] and vanishes as [Formula: see text], and the boson peak shifts to lower frequencies for less compressed systems.

18.
Eur Phys J E Soft Matter ; 43(11): 72, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33242169

RESUMEN

A theory of vibrational excitations based on power-law spatial correlations in the elastic constants (or equivalently in the internal stress) is derived, in order to determine the vibrational density of states D([Formula: see text]) of disordered solids. The results provide the first prediction of a boson peak in amorphous materials where spatial correlations in the internal stresses (or elastic constants) are of power-law form, as is often the case in experimental systems, leading to a logarithmic enhancement of (Rayleigh) phonon attenuation. A logarithmic correction of the form [Formula: see text] is predicted to occur in the plot of the reduced excess DOS for frequencies around the boson peak in 3D. Moreover, the theory provides scaling laws of the density of states in the low-frequency region, including a [Formula: see text] regime in 3D, and provides information about how the boson peak intensity depends on the strength of power-law decay of fluctuations in elastic constants or internal stress. Analytical expressions are also derived for the dynamic structure factor for longitudinal excitations, which include a logarithmic correction factor, and numerical calculations are presented supporting the assumptions used in the theory.

19.
Eur Phys J E Soft Matter ; 43(9): 56, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32920738

RESUMEN

It has been accepted that low-frequency vibrational modes are causally correlated to fundamental plastic rearrangement events in amorphous solids, irrespective of the structural details. But the mode-event relationship is far from clear. In this work, we carry out case studies using atomistic simulations of a three-dimensional Cu50Zr50 model glass under athermal, quasistatic shear. We focus on the first four plastic events, and carefully trace the spatiotemporal evolution of the associated low-frequency normal modes with applied shear strain. We reveal that these low-frequency modes get highly entangled with each other, from which the critical mode emerges spontaneously to predict a shear transformation event. But the detailed emergence picture is event by event and shear-protocol dependent, even for the first plastic event. This demonstrates that the instability of a plastic event is a result of extremely complex multiple-path choice or competition, and there is a strong, elastic interaction among neighboring instability events. At last, the generality of the present findings is shown to be applicable to covalent-bonded glasses.

20.
Adv Mater ; 32(10): e1907453, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32009261

RESUMEN

Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase-change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo-mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single-crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase-change memory crystallization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA