Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(7): 3773-3782, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918891

RESUMEN

Exposure to mustard gas can cause damage or death to human beings, depending on the concentration and duration. Thus, developing high-performance mustard-gas sensors is highly needed for early warning. Herein, ultrathin WO3 nanosheet-supported Pd nanoparticles hybrids (WO3 NSs/Pd) are prepared as chemiresistive sulfur mustard simulant (e.g., 2-chloroethyl ethyl sulfide, 2-CEES) gas sensors. As a result, the optimal WO3 NSs/Pd-2 (2 wt % of Pd)-based sensor exhibits a high response of 8.5 and a rapid response/recovery time of 9/92 s toward 700 ppb 2-CEES at 260 °C. The detection limit could be as low as 15 ppb with a response of 1.4. Moreover, WO3 NSs/Pd-2 shows good repeatability, 30-day operating stability, and good selectivity. In WO3 NSs/Pd-2, ultrathin WO3 NSs are rich in oxygen vacancies, offer more sites to adsorb oxygen species, and make their size close to or even within the thickness of the so-called electron depletion layer, thus inducing a large resistance change (response). Moreover, strong metal-support interactions (SMSIs) between WO3 NSs and Pd nanoparticles enhance the catalytic redox reaction performance, thereby achieving a superior sensing performance toward 2-CEES. These findings in this work provide a new approach to optimize the sensing performance of a chemiresistive sensor by constructing SMSIs in ultrathin metal oxides.


Asunto(s)
Gas Mostaza , Óxidos , Paladio , Tungsteno , Tungsteno/química , Paladio/química , Gas Mostaza/análisis , Gas Mostaza/química , Gas Mostaza/análogos & derivados , Óxidos/química , Límite de Detección , Nanopartículas del Metal/química , Nanoestructuras/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Técnicas Electroquímicas/métodos
2.
ACS Appl Mater Interfaces ; 16(23): 30371-30384, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38815133

RESUMEN

Manganese oxides with porous structure and abundant active sites show potential in degrading sulfur mustard (HD). However, there is an interface effect between the oily liquid HD and nano oxides, and the powder is prone to agglomeration, which leads to incomplete contact and limited degradation ability. Here, we demonstrate a simple hydrothermal method for preparing MnO2/Ti3C2 composites to address this problem. The influence of morphology and crystal structure on performance are examined. Herein, flower-like MnO2 is loaded onto the surface or interlayer of Ti3C2-MXene nanosheets during in situ formation, significantly expanding the specific surface area. It also provides abundant acid-base sites and oxygen vacancies for the degradation of simulants 2-chloro-ethyl-ethyl thioether (2-CEES) without external energy, resulting in a reaction half-life as fast as 12.5 min. The relationship between structure and performance is clearly elaborated through temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) analyses. Based on in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis, gas chromatography-mass spectrometry (GC-MS) analysis, and density functional theory (DFT) calculation, the proposed degradation pathway of the 2-CEES molecule is a synergistic effect of hydrolysis, elimination, and oxidation. Furthermore, the products are nontoxic or low toxic. Metal oxide/MXene composites are first illustrated for their potential use in degrading sulfur mustard, suggesting new insights into these materials as novel decontamination for decomposing chemical warfare agents.

3.
Curr Org Synth ; 19(7): 808-818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35232352

RESUMEN

BACKGROUND: Due to the increasing chemical and biological threats posed by terrorist attacks, there is a need to design and prepare nanofibers (NFs) with the ability to neutralize CWAs. For this purpose polyacrylonitrile NFs and polyoxomolybdate [Mo154] (abbreviated as PAN NFs/[Mo154]) as a heterogeneous catalyst was prepared by electrospinning method with a diameter of about 100nm. OBJECTIVE: The PAN NFs/[Mo154] catalyze the selective aerobic oxidation of sulfur mustard stimulants, such as 2-chloroethyl ethyl sulfide (2-CEES) and 2-chloroethyl phenyl sulfide (2-CEPS) under green and "ambient" conditions (25 °C, 1atm O2) in the presence of ethanol with high efficiency and selectivity. 2-CEES was selected as a model reaction to optimize the parameters of the reaction. METHODS: The progress of the reaction was evaluated after different times using GC-FID, GCMS and TLC. The reaction product was also confirmed by 1H-NMR spectroscopy. RESULTS: The aerobic oxidation results of 2-CEES showed that PAN NFs/[Mo154] have a conversion of 98% to produce only a nontoxic product, 2-CEESO with the selectivity of 100% after 45min. The results were performed using [Mo154] without any PAN NFs for comparison whereas [Mo154] converts only 52% of 2-CEES under identical conditions. CONCLUSION: Heterogeneous PAN NFs/[Mo154] catalyst was reused after washing with solvent up to 5 steps without leaching of [Mo154] from PAN NFs and without any loss in efficiency due to the morphology of NFs. In addition to the recovery of PAN NFs/[Mo154] in different cycles, the use of FT-IR, UV-Vis and TEM techniques confirms the stability and morphology of PAN NFs/[Mo154] after the fifth cycle, 2-CEES oxidation. According to our information, this report is the first use of PAN NFs enriched with [Mo154] for aerobic oxidation of sulfur mustard simulants.


Asunto(s)
Gas Mostaza , Nanofibras , Catálisis , Gas Mostaza/química , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA