Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 53(3): 383-397, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38572766

RESUMEN

Arthropods are active during the winter in temperate regions. Many use the seasonal snowpack as a buffer against harsh ambient conditions and are active in a refugium known as the subnivium. While the use of the subnivium by arthropods is well established, far less is known about subnivium community composition, abundance, biomass, and diversity and how these characteristics compare with the community in the summer. Understanding subnivium communities is especially important given the observed and anticipated changes in snowpack depth and duration due to the changing climate. We compared subnivium arthropod communities with those active during the summer using pitfall trapping in northern New Hampshire. We found that compositions of ground-active arthropod communities in the subnivium differed from those in the summer. The subnivium arthropod community featured moderate levels of richness and other measures of diversity that tended to be lower than the summer community. More strikingly, the subnivium community was much lower in overall abundance and biomass. Interestingly, some arthropods were dominant in the subnivium but either rare or absent in summer collections. These putative "subnivium specialists" included the spider Cicurina brevis (Emerton 1890) (Araneae: Hahniidae) and 3 rove beetles (Coleoptera: Staphylinidae): Arpedium cribratum Fauvel, 1878, Lesteva pallipes LeConte, 1863, and Porrhodites inflatus (Hatch, 1957). This study provides a detailed account of the subnivium arthropod community, establishes baseline information on arthropod communities in temperate forests of northeastern North America, and explores the idea of subnivium specialist taxa that are highly active in winter and might be especially vulnerable to climate change.


Asunto(s)
Artrópodos , Biodiversidad , Estaciones del Año , Nieve , Animales , New Hampshire , Arañas/fisiología , Refugio de Fauna , Biomasa
2.
Proc Biol Sci ; 289(1979): 20220833, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35892213

RESUMEN

Ecological heterogeneity promotes species persistence and diversity. Environmental change has, however, eroded patterns of heterogeneity globally, stifling species recovery. To test the effects of seasonal heterogeneity on a reintroduced carnivore, American martens (Martes americana), we compared metrics of local and season-specific heterogeneity to traditional forest metrics on the survival of 242 individuals across 8 years and predicted a survival landscape for 13 reintroduction sites. We found that heterogeneity-created by forest structure in the growing season and snow in the winter-improved survival and outperformed traditional forest metrics. Spatial variation in heterogeneity created a distinct survival landscape, but seasonal change in heterogeneity generated temporal discordance. All translocation sites possessed high forest heterogeneity but there were greater differences in winter heterogeneity; recovery sites with the poorest snow conditions had the lowest viability. Our work links heterogeneity across seasons to fitness and suggests that management strategies that increase seasonal aspects of heterogeneity may help to recover other sensitive species to continuing environmental change.


Asunto(s)
Bosques , Nieve , Humanos , Estaciones del Año
3.
Proc Biol Sci ; 287(1934): 20200609, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32900309

RESUMEN

For overwintering species, individuals' ability to find refugia from inclement weather and predators probably confers strong fitness benefits. How animals use their environment can be mediated by their personality (e.g. risk-taking), but does personality mediate how overwintering species select refugia? Snow cover is a dynamic winter characteristic that can influence crypsis or provide below-the-snow refugia. We explored how wintering ruffed grouse (Bonasa umbellus) selected snow roosting sites, a behaviour that reduces stress and cold exposure. We linked selection for approximately 700 roosts with survival of 42 grouse, and showed that grouse generally selected deeper snow and warmer areas. Grouse found in shallow snow were less likely to survive winter. However, individuals that selected deep snow improved their survival, suggesting that demographic consequences of selecting winter refugia are mediated by differences in personality. Our study provides a crucial, and seldom addressed, link between personality in resource selection and resulting demographic consequences.


Asunto(s)
Galliformes/fisiología , Refugio de Fauna , Animales , Demografía , Personalidad , Estaciones del Año , Nieve
4.
Glob Chang Biol ; 26(11): 6350-6362, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32871618

RESUMEN

Winter climate warming is rapidly leading to changes in snow depth and soil temperatures across mid- and high-latitude ecosystems, with important implications for survival and distribution of species that overwinter beneath the snow. Amphibians are a particularly vulnerable group to winter climate change because of the tight coupling between their body temperature and metabolic rate. Here, we used a mechanistic microclimate model coupled to an animal biophysics model to predict the spatially explicit effects of future climate change on the wintering energetics of a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus), across its distributional range in the eastern United States. Our below-the-snow microclimate simulations were driven by dynamically downscaled climate projections from a regional climate model coupled to a one-dimensional model of the Laurentian Great Lakes. We found that warming soil temperatures and decreasing winter length have opposing effects on Wood Frog winter energy requirements, leading to geographically heterogeneous implications for Wood Frogs. While energy expenditures and peak body ice content were predicted to decline in Wood Frogs across most of our study region, we identified an area of heightened energetic risk in the northwestern part of the Great Lakes region where energy requirements were predicted to increase. Because Wood Frogs rely on body stores acquired in fall to fuel winter survival and spring breeding, increased winter energy requirements have the potential to impact local survival and reproduction. Given the geographically variable and intertwined drivers of future under-snow conditions (e.g., declining snow depths, rising air temperatures, shortening winters), spatially explicit assessments of species energetics and risk will be important to understanding the vulnerability of subnivium-adapted species.


Asunto(s)
Ecosistema , Nieve , Animales , Cambio Climático , Great Lakes Region , Ranidae , Estaciones del Año
5.
Int J Parasitol Parasites Wildl ; 8: 229-233, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30906691

RESUMEN

Parasite nematodes of the genus Trichinella are transmitted from one host to another through the ingestion of larvae present in striated muscles. The longer the survival of muscle larvae in host carcasses, the higher the probability of being ingested by a scavenging host. Thereby, these nematodes developed an anaerobic metabolism favouring their survival in decaying tissues. In addition, muscle larvae of three taxa, namely Trichinella nativa, Trichinella britovi and Trichinella T6, can survive freezing for several months to several years depending on the taxon. The aim of the present work was to investigate the survival time of T. britovi larvae in naturally infected host carcasses preserved beneath or above the snow. Fox and raccoon dog carcasses naturally infected with T. britovi larvae were preserved beneath or above the snow in a cold mountainous area. Temperature and relative humidity were recorded. Every 14 days, muscle samples collected from each carcass, were digested and larvae were counted and given per os to laboratory mice to evaluate their reproductive capacity index (RCI). The RCI of larvae in carcasses preserved beneath the snow (the subnivium) ranged from 23 to 25 at day 0, to 12-18 after 112 days. In contrast, the RCI of larvae in carcasses preserved above the snow ranged from 22 to 27 at day 0, to 0.0 after 112 days. The difference between the RCIs of larvae beneath the snow and above the snow was statistically significant (P < 0.01). These data corroborate the hypothesis that the subnivium with its environmental stability favours the survival of Trichinella larvae in host muscles, increasing the probability of their transmission to other hosts. On the other hand, the environment above the snow, characterized by sudden temperature variations, causes strong environmental stress for larvae in host carrions causing their death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA